Andreas Grivas, Beatrice Alex, Claire Grover, R. Tobin, W. Whiteley
{"title":"不是一个可爱的中风:基于规则和神经网络的脑放射学报告信息提取系统分析","authors":"Andreas Grivas, Beatrice Alex, Claire Grover, R. Tobin, W. Whiteley","doi":"10.18653/v1/2020.louhi-1.4","DOIUrl":null,"url":null,"abstract":"We present an in-depth comparison of three clinical information extraction (IE) systems designed to perform entity recognition and negation detection on brain imaging reports: EdIE-R, a bespoke rule-based system, and two neural network models, EdIE-BiLSTM and EdIE-BERT, both multi-task learning models with a BiLSTM and BERT encoder respectively. We compare our models both on an in-sample and an out-of-sample dataset containing mentions of stroke findings and draw on our error analysis to suggest improvements for effective annotation when building clinical NLP models for a new domain. Our analysis finds that our rule-based system outperforms the neural models on both datasets and seems to generalise to the out-of-sample dataset. On the other hand, the neural models do not generalise negation to the out-of-sample dataset, despite metrics on the in-sample dataset suggesting otherwise.","PeriodicalId":448872,"journal":{"name":"International Workshop on Health Text Mining and Information Analysis","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Not a cute stroke: Analysis of Rule- and Neural Network-based Information Extraction Systems for Brain Radiology Reports\",\"authors\":\"Andreas Grivas, Beatrice Alex, Claire Grover, R. Tobin, W. Whiteley\",\"doi\":\"10.18653/v1/2020.louhi-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an in-depth comparison of three clinical information extraction (IE) systems designed to perform entity recognition and negation detection on brain imaging reports: EdIE-R, a bespoke rule-based system, and two neural network models, EdIE-BiLSTM and EdIE-BERT, both multi-task learning models with a BiLSTM and BERT encoder respectively. We compare our models both on an in-sample and an out-of-sample dataset containing mentions of stroke findings and draw on our error analysis to suggest improvements for effective annotation when building clinical NLP models for a new domain. Our analysis finds that our rule-based system outperforms the neural models on both datasets and seems to generalise to the out-of-sample dataset. On the other hand, the neural models do not generalise negation to the out-of-sample dataset, despite metrics on the in-sample dataset suggesting otherwise.\",\"PeriodicalId\":448872,\"journal\":{\"name\":\"International Workshop on Health Text Mining and Information Analysis\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Health Text Mining and Information Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.louhi-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Health Text Mining and Information Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.louhi-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Not a cute stroke: Analysis of Rule- and Neural Network-based Information Extraction Systems for Brain Radiology Reports
We present an in-depth comparison of three clinical information extraction (IE) systems designed to perform entity recognition and negation detection on brain imaging reports: EdIE-R, a bespoke rule-based system, and two neural network models, EdIE-BiLSTM and EdIE-BERT, both multi-task learning models with a BiLSTM and BERT encoder respectively. We compare our models both on an in-sample and an out-of-sample dataset containing mentions of stroke findings and draw on our error analysis to suggest improvements for effective annotation when building clinical NLP models for a new domain. Our analysis finds that our rule-based system outperforms the neural models on both datasets and seems to generalise to the out-of-sample dataset. On the other hand, the neural models do not generalise negation to the out-of-sample dataset, despite metrics on the in-sample dataset suggesting otherwise.