神经网络的鲁棒性:一个概率和实用的方法

Ravi Mangal, A. Nori, A. Orso
{"title":"神经网络的鲁棒性:一个概率和实用的方法","authors":"Ravi Mangal, A. Nori, A. Orso","doi":"10.1109/ICSE-NIER.2019.00032","DOIUrl":null,"url":null,"abstract":"Neural networks are becoming increasingly prevalent in software, and it is therefore important to be able to verify their behavior. Because verifying the correctness of neural networks is extremely challenging, it is common to focus on the verification of other properties of these systems. One important property, in particular, is robustness. Most existing definitions of robustness, however, focus on the worst-case scenario where the inputs are adversarial. Such notions of robustness are too strong, and unlikely to be satisfied by-and verifiable for-practical neural networks. Observing that real-world inputs to neural networks are drawn from non-adversarial probability distributions, we propose a novel notion of robustness: probabilistic robustness, which requires the neural network to be robust with at least (1 - ε) probability with respect to the input distribution. This probabilistic approach is practical and provides a principled way of estimating the robustness of a neural network. We also present an algorithm, based on abstract interpretation and importance sampling, for checking whether a neural network is probabilistically robust. Our algorithm uses abstract interpretation to approximate the behavior of a neural network and compute an overapproximation of the input regions that violate robustness. It then uses importance sampling to counter the effect of such overapproximation and compute an accurate estimate of the probability that the neural network violates the robustness property.","PeriodicalId":180082,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Robustness of Neural Networks: A Probabilistic and Practical Approach\",\"authors\":\"Ravi Mangal, A. Nori, A. Orso\",\"doi\":\"10.1109/ICSE-NIER.2019.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks are becoming increasingly prevalent in software, and it is therefore important to be able to verify their behavior. Because verifying the correctness of neural networks is extremely challenging, it is common to focus on the verification of other properties of these systems. One important property, in particular, is robustness. Most existing definitions of robustness, however, focus on the worst-case scenario where the inputs are adversarial. Such notions of robustness are too strong, and unlikely to be satisfied by-and verifiable for-practical neural networks. Observing that real-world inputs to neural networks are drawn from non-adversarial probability distributions, we propose a novel notion of robustness: probabilistic robustness, which requires the neural network to be robust with at least (1 - ε) probability with respect to the input distribution. This probabilistic approach is practical and provides a principled way of estimating the robustness of a neural network. We also present an algorithm, based on abstract interpretation and importance sampling, for checking whether a neural network is probabilistically robust. Our algorithm uses abstract interpretation to approximate the behavior of a neural network and compute an overapproximation of the input regions that violate robustness. It then uses importance sampling to counter the effect of such overapproximation and compute an accurate estimate of the probability that the neural network violates the robustness property.\",\"PeriodicalId\":180082,\"journal\":{\"name\":\"2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-NIER.2019.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-NIER.2019.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

摘要

神经网络在软件中越来越流行,因此能够验证它们的行为是很重要的。由于验证神经网络的正确性极具挑战性,因此通常关注这些系统的其他属性的验证。其中一个重要的特性是鲁棒性。然而,大多数现有的鲁棒性定义关注的是输入是对抗性的最坏情况。这种鲁棒性的概念过于强大,不太可能被实际的神经网络所满足和验证。观察到神经网络的真实输入来自非对抗性概率分布,我们提出了一种新的鲁棒性概念:概率鲁棒性,这要求神经网络相对于输入分布具有至少(1 - ε)概率的鲁棒性。这种概率方法是实用的,并提供了一种估计神经网络鲁棒性的原则方法。我们还提出了一种基于抽象解释和重要抽样的算法来检验神经网络是否具有概率鲁棒性。我们的算法使用抽象解释来近似神经网络的行为,并计算违反鲁棒性的输入区域的过近似值。然后,它使用重要性抽样来抵消这种过度逼近的影响,并计算出神经网络违反鲁棒性的概率的准确估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robustness of Neural Networks: A Probabilistic and Practical Approach
Neural networks are becoming increasingly prevalent in software, and it is therefore important to be able to verify their behavior. Because verifying the correctness of neural networks is extremely challenging, it is common to focus on the verification of other properties of these systems. One important property, in particular, is robustness. Most existing definitions of robustness, however, focus on the worst-case scenario where the inputs are adversarial. Such notions of robustness are too strong, and unlikely to be satisfied by-and verifiable for-practical neural networks. Observing that real-world inputs to neural networks are drawn from non-adversarial probability distributions, we propose a novel notion of robustness: probabilistic robustness, which requires the neural network to be robust with at least (1 - ε) probability with respect to the input distribution. This probabilistic approach is practical and provides a principled way of estimating the robustness of a neural network. We also present an algorithm, based on abstract interpretation and importance sampling, for checking whether a neural network is probabilistically robust. Our algorithm uses abstract interpretation to approximate the behavior of a neural network and compute an overapproximation of the input regions that violate robustness. It then uses importance sampling to counter the effect of such overapproximation and compute an accurate estimate of the probability that the neural network violates the robustness property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信