图的H-和H2-亲切标记

B. Y. Disca, M. G. Domingo
{"title":"图的H-和H2-亲切标记","authors":"B. Y. Disca, M. G. Domingo","doi":"10.12988/imf.2022.912327","DOIUrl":null,"url":null,"abstract":"The concept of H − cordial graphs is introduced by Ibrahim Cahit in 1996. Ibrahim Cahit used the symbol H to represent Hadamard Matrices. He claims that H − cordial graphs can be useful to construct Hadamard matrices since any n x n Hadamard matrix gives an H − cordial labeling for the bipartite graph. In this paper we investigate H − and H 2 − cordial graphs obtained by duplication of a vertex, duplication of a vertex by a new edge and duplication of an edge by a new vertex in some graph elements on crown graph.","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H- and H2- cordial labeling of graphs in the context of some graph operations on crown graph\",\"authors\":\"B. Y. Disca, M. G. Domingo\",\"doi\":\"10.12988/imf.2022.912327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of H − cordial graphs is introduced by Ibrahim Cahit in 1996. Ibrahim Cahit used the symbol H to represent Hadamard Matrices. He claims that H − cordial graphs can be useful to construct Hadamard matrices since any n x n Hadamard matrix gives an H − cordial labeling for the bipartite graph. In this paper we investigate H − and H 2 − cordial graphs obtained by duplication of a vertex, duplication of a vertex by a new edge and duplication of an edge by a new vertex in some graph elements on crown graph.\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2022.912327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2022.912327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

H -亲切图的概念是由Ibrahim Cahit在1996年提出的。Ibrahim Cahit使用符号H来表示Hadamard矩阵。他声称H -亲切图可以用来构造Hadamard矩阵,因为任何n x n个Hadamard矩阵都给出了二部图的H -亲切标记。本文研究了冠图上若干图元中由顶点复制、新边复制顶点和新顶点复制边得到的H−和H 2−诚恳图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H- and H2- cordial labeling of graphs in the context of some graph operations on crown graph
The concept of H − cordial graphs is introduced by Ibrahim Cahit in 1996. Ibrahim Cahit used the symbol H to represent Hadamard Matrices. He claims that H − cordial graphs can be useful to construct Hadamard matrices since any n x n Hadamard matrix gives an H − cordial labeling for the bipartite graph. In this paper we investigate H − and H 2 − cordial graphs obtained by duplication of a vertex, duplication of a vertex by a new edge and duplication of an edge by a new vertex in some graph elements on crown graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信