使用改进的IEEE 30总线系统的动态电压稳定性研究

O. Oni, I. Davidson, Kamati N. I. Mbangula
{"title":"使用改进的IEEE 30总线系统的动态电压稳定性研究","authors":"O. Oni, I. Davidson, Kamati N. I. Mbangula","doi":"10.1109/EEEIC.2016.7555668","DOIUrl":null,"url":null,"abstract":"Power System stability is an essential study in the planning and operation of an efficient, economic, reliable and secure electric power system because it encompasses all the facet of power systems operations, from planning, to conceptual design stages of the project as well as during the systems operating life span. This paper presents different scenario of power system stability studies on a modified IEEE 30-bus system which is subjected to different faults conditions. A scenario whereby the longest high voltage alternating current (HVAC) line is replaced with a high voltage direct current (HVDC) line was implemented. The results obtained show that the HVDC line enhances system stability more compared to the contemporary HVAC line. Dynamic analysis using RMS simulation tool was used on DigSILENT PowerFactory.","PeriodicalId":246856,"journal":{"name":"2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dynamic voltage stability studies using a modified IEEE 30-bus system\",\"authors\":\"O. Oni, I. Davidson, Kamati N. I. Mbangula\",\"doi\":\"10.1109/EEEIC.2016.7555668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power System stability is an essential study in the planning and operation of an efficient, economic, reliable and secure electric power system because it encompasses all the facet of power systems operations, from planning, to conceptual design stages of the project as well as during the systems operating life span. This paper presents different scenario of power system stability studies on a modified IEEE 30-bus system which is subjected to different faults conditions. A scenario whereby the longest high voltage alternating current (HVAC) line is replaced with a high voltage direct current (HVDC) line was implemented. The results obtained show that the HVDC line enhances system stability more compared to the contemporary HVAC line. Dynamic analysis using RMS simulation tool was used on DigSILENT PowerFactory.\",\"PeriodicalId\":246856,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EEEIC.2016.7555668\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EEEIC.2016.7555668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

电力系统稳定性是高效、经济、可靠和安全的电力系统规划和运行的重要研究内容,因为它涵盖了电力系统运行的各个方面,从规划到项目的概念设计阶段以及系统运行寿命。本文介绍了一种改进的IEEE 30总线系统在不同故障条件下的电力系统稳定性研究。实现了将最长的高压交流电(HVAC)线路替换为高压直流(HVDC)线路的方案。结果表明,与现有的暖通空调线路相比,直流输电线路更能提高系统的稳定性。采用RMS仿真工具对DigSILENT PowerFactory进行动态分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic voltage stability studies using a modified IEEE 30-bus system
Power System stability is an essential study in the planning and operation of an efficient, economic, reliable and secure electric power system because it encompasses all the facet of power systems operations, from planning, to conceptual design stages of the project as well as during the systems operating life span. This paper presents different scenario of power system stability studies on a modified IEEE 30-bus system which is subjected to different faults conditions. A scenario whereby the longest high voltage alternating current (HVAC) line is replaced with a high voltage direct current (HVDC) line was implemented. The results obtained show that the HVDC line enhances system stability more compared to the contemporary HVAC line. Dynamic analysis using RMS simulation tool was used on DigSILENT PowerFactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信