{"title":"激光陀螺捷联惯导系统的24序列标定方案","authors":"Huiying Fan, Haonan Liu, Junhong Liu, Qiongnan Huang, Zhanming Hu, Fang Lin, Gongchang Wang","doi":"10.1117/12.2668359","DOIUrl":null,"url":null,"abstract":"The calibration accuracy of inertial measurement unit (IMU) is one of the important factors affecting the positioning accuracy of strapdown inertial navigation system (SINS). A 24-sequence calibration rotation scheme is proposed in this paper, which improves the observability and observability degree compared with the traditional 18-sequence scheme, and makes the calibration results more accurate. Simulation results show that the calibration results of 24-sequence scheme are closer to the actual value than those of 18-sequence scheme.","PeriodicalId":227067,"journal":{"name":"International Conference on Precision Instruments and Optical Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 24-sequence calibration scheme of laser gyro strapdown inertial navigation system\",\"authors\":\"Huiying Fan, Haonan Liu, Junhong Liu, Qiongnan Huang, Zhanming Hu, Fang Lin, Gongchang Wang\",\"doi\":\"10.1117/12.2668359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The calibration accuracy of inertial measurement unit (IMU) is one of the important factors affecting the positioning accuracy of strapdown inertial navigation system (SINS). A 24-sequence calibration rotation scheme is proposed in this paper, which improves the observability and observability degree compared with the traditional 18-sequence scheme, and makes the calibration results more accurate. Simulation results show that the calibration results of 24-sequence scheme are closer to the actual value than those of 18-sequence scheme.\",\"PeriodicalId\":227067,\"journal\":{\"name\":\"International Conference on Precision Instruments and Optical Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Precision Instruments and Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2668359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Precision Instruments and Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2668359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 24-sequence calibration scheme of laser gyro strapdown inertial navigation system
The calibration accuracy of inertial measurement unit (IMU) is one of the important factors affecting the positioning accuracy of strapdown inertial navigation system (SINS). A 24-sequence calibration rotation scheme is proposed in this paper, which improves the observability and observability degree compared with the traditional 18-sequence scheme, and makes the calibration results more accurate. Simulation results show that the calibration results of 24-sequence scheme are closer to the actual value than those of 18-sequence scheme.