谁对英国脱欧不满?基于机器学习的金融不稳定性研究

Stathis Polyzos, Aristeidis Samitas, Marina-Selini Katsaiti
{"title":"谁对英国脱欧不满?基于机器学习的金融不稳定性研究","authors":"Stathis Polyzos, Aristeidis Samitas, Marina-Selini Katsaiti","doi":"10.2139/ssrn.3710504","DOIUrl":null,"url":null,"abstract":"In this paper, we assess the happiness cost of Brexit in the UK and the EU, using data from the Gallup World Poll. We implement a two-stage learning machine, using a naive Bayes classifier to extract happiness preferences of the population and then passing these onto an artificial neural network of attributes to generate dynamic happiness functions for each household, on an agent-based modelling framework. We find that there is a significant long-run cost in terms of both happiness and unemployment, which primarily affects the most vulnerable portion of the population. In addition, despite the expected instability in City's financial centre, the UK financial sector seems to be well equipped to deal with the repercussions, thus minimising the welfare costs for the country. Our findings extend the discussion of the economic costs of Brexit, by adding the welfare cost of the ensuing financial instability.","PeriodicalId":191513,"journal":{"name":"European Economics: Macroeconomics & Monetary Economics eJournal","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Who Is Unhappy for Brexit? A Machine-Learning, Agent-based study on Financial Instability\",\"authors\":\"Stathis Polyzos, Aristeidis Samitas, Marina-Selini Katsaiti\",\"doi\":\"10.2139/ssrn.3710504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we assess the happiness cost of Brexit in the UK and the EU, using data from the Gallup World Poll. We implement a two-stage learning machine, using a naive Bayes classifier to extract happiness preferences of the population and then passing these onto an artificial neural network of attributes to generate dynamic happiness functions for each household, on an agent-based modelling framework. We find that there is a significant long-run cost in terms of both happiness and unemployment, which primarily affects the most vulnerable portion of the population. In addition, despite the expected instability in City's financial centre, the UK financial sector seems to be well equipped to deal with the repercussions, thus minimising the welfare costs for the country. Our findings extend the discussion of the economic costs of Brexit, by adding the welfare cost of the ensuing financial instability.\",\"PeriodicalId\":191513,\"journal\":{\"name\":\"European Economics: Macroeconomics & Monetary Economics eJournal\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Economics: Macroeconomics & Monetary Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3710504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Economics: Macroeconomics & Monetary Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3710504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们使用盖洛普世界民意调查的数据评估了英国和欧盟脱欧的幸福成本。我们实现了一个两阶段的学习机,使用朴素贝叶斯分类器提取人口的幸福偏好,然后将这些信息传递到属性的人工神经网络上,在基于代理的建模框架上为每个家庭生成动态幸福函数。我们发现,就幸福和失业而言,存在重大的长期成本,这主要影响到人口中最脆弱的部分。此外,尽管伦敦金融城的金融中心预计会出现不稳定,但英国金融业似乎已经做好了应对影响的准备,从而将国家的福利成本降至最低。我们的研究结果通过增加随之而来的金融不稳定的福利成本,扩展了对英国脱欧经济成本的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Who Is Unhappy for Brexit? A Machine-Learning, Agent-based study on Financial Instability
In this paper, we assess the happiness cost of Brexit in the UK and the EU, using data from the Gallup World Poll. We implement a two-stage learning machine, using a naive Bayes classifier to extract happiness preferences of the population and then passing these onto an artificial neural network of attributes to generate dynamic happiness functions for each household, on an agent-based modelling framework. We find that there is a significant long-run cost in terms of both happiness and unemployment, which primarily affects the most vulnerable portion of the population. In addition, despite the expected instability in City's financial centre, the UK financial sector seems to be well equipped to deal with the repercussions, thus minimising the welfare costs for the country. Our findings extend the discussion of the economic costs of Brexit, by adding the welfare cost of the ensuing financial instability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信