语音识别核特征空间的相关子空间选择

Jaydeep De, G. Saha
{"title":"语音识别核特征空间的相关子空间选择","authors":"Jaydeep De, G. Saha","doi":"10.1109/INDCON.2010.5712652","DOIUrl":null,"url":null,"abstract":"This paper describes an approach to select the most relevant subspace in Kernel PCA feature space applied on MFCC coefficients for speech recognition. It has been seen that the relevant information about a supervised classification problem is contained in a finite number of leading Kernel PCA components if the Kernel matches the underlying classification problem. In this paper our contribution is to foster an understanding about the appropriate Kernel selection for different phonemes in a speech database and then create an insight about the most relevant dimensions for those phonemes in that Kernel space. Using this approach we have obtained better results for speech recognition as compared to standard technique.","PeriodicalId":109071,"journal":{"name":"2010 Annual IEEE India Conference (INDICON)","volume":"335 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relevant subspace selection in Kernel feature space for speech recognition\",\"authors\":\"Jaydeep De, G. Saha\",\"doi\":\"10.1109/INDCON.2010.5712652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an approach to select the most relevant subspace in Kernel PCA feature space applied on MFCC coefficients for speech recognition. It has been seen that the relevant information about a supervised classification problem is contained in a finite number of leading Kernel PCA components if the Kernel matches the underlying classification problem. In this paper our contribution is to foster an understanding about the appropriate Kernel selection for different phonemes in a speech database and then create an insight about the most relevant dimensions for those phonemes in that Kernel space. Using this approach we have obtained better results for speech recognition as compared to standard technique.\",\"PeriodicalId\":109071,\"journal\":{\"name\":\"2010 Annual IEEE India Conference (INDICON)\",\"volume\":\"335 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2010.5712652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2010.5712652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于MFCC系数的核主成分分析特征空间中最相关子空间的选择方法,用于语音识别。我们已经看到,如果核与底层分类问题匹配,有关监督分类问题的相关信息包含在有限数量的主成分核中。在本文中,我们的贡献是促进对语音数据库中不同音素的适当内核选择的理解,然后创建关于内核空间中这些音素的最相关维度的见解。使用这种方法,我们获得了比标准技术更好的语音识别结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relevant subspace selection in Kernel feature space for speech recognition
This paper describes an approach to select the most relevant subspace in Kernel PCA feature space applied on MFCC coefficients for speech recognition. It has been seen that the relevant information about a supervised classification problem is contained in a finite number of leading Kernel PCA components if the Kernel matches the underlying classification problem. In this paper our contribution is to foster an understanding about the appropriate Kernel selection for different phonemes in a speech database and then create an insight about the most relevant dimensions for those phonemes in that Kernel space. Using this approach we have obtained better results for speech recognition as compared to standard technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信