Abdullah Alfadda, R. Adhikari, M. Kuzlu, S. Rahman
{"title":"基于SVR的小时前太阳能光伏发电功率预测方法","authors":"Abdullah Alfadda, R. Adhikari, M. Kuzlu, S. Rahman","doi":"10.1109/ISGT.2017.8086020","DOIUrl":null,"url":null,"abstract":"The use of solar photovoltaic (PV) in power generation has grown in the last decade. Unlike the traditional power generation methods (i.e. oil and gas), the solar output power is fluctuating and uncertain, mainly due to clouds movement and other weather factors. Therefore, in order to have a stable power grid, the electricity utilities need to forecast the solar output power, so they can prepare ahead adequately. In this work, hour-ahead solar PV power forecasting is performed using Support Vector Regression (SVR), Polynomial Regression and Lasso. The implemented regression models were tested under different feature selection schemes. These features include weather conditions (i.e. sky condition, temperature, etc.), power generated in the last few hours, day and time information. Based on the comparative results obtained, the SVR forecasting model outperforms the other two models in terms of accuracy.","PeriodicalId":296398,"journal":{"name":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Hour-ahead solar PV power forecasting using SVR based approach\",\"authors\":\"Abdullah Alfadda, R. Adhikari, M. Kuzlu, S. Rahman\",\"doi\":\"10.1109/ISGT.2017.8086020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of solar photovoltaic (PV) in power generation has grown in the last decade. Unlike the traditional power generation methods (i.e. oil and gas), the solar output power is fluctuating and uncertain, mainly due to clouds movement and other weather factors. Therefore, in order to have a stable power grid, the electricity utilities need to forecast the solar output power, so they can prepare ahead adequately. In this work, hour-ahead solar PV power forecasting is performed using Support Vector Regression (SVR), Polynomial Regression and Lasso. The implemented regression models were tested under different feature selection schemes. These features include weather conditions (i.e. sky condition, temperature, etc.), power generated in the last few hours, day and time information. Based on the comparative results obtained, the SVR forecasting model outperforms the other two models in terms of accuracy.\",\"PeriodicalId\":296398,\"journal\":{\"name\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT.2017.8086020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT.2017.8086020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hour-ahead solar PV power forecasting using SVR based approach
The use of solar photovoltaic (PV) in power generation has grown in the last decade. Unlike the traditional power generation methods (i.e. oil and gas), the solar output power is fluctuating and uncertain, mainly due to clouds movement and other weather factors. Therefore, in order to have a stable power grid, the electricity utilities need to forecast the solar output power, so they can prepare ahead adequately. In this work, hour-ahead solar PV power forecasting is performed using Support Vector Regression (SVR), Polynomial Regression and Lasso. The implemented regression models were tested under different feature selection schemes. These features include weather conditions (i.e. sky condition, temperature, etc.), power generated in the last few hours, day and time information. Based on the comparative results obtained, the SVR forecasting model outperforms the other two models in terms of accuracy.