在线数据库系统性能异常的自动诊断

Ping Liu, Shenglin Zhang, Yongqian Sun, Yuan Meng, Jiahai Yang, Dan Pei
{"title":"在线数据库系统性能异常的自动诊断","authors":"Ping Liu, Shenglin Zhang, Yongqian Sun, Yuan Meng, Jiahai Yang, Dan Pei","doi":"10.1109/IPCCC50635.2020.9391550","DOIUrl":null,"url":null,"abstract":"The root cause diagnosis of performance anomaly for online database anomalies is challenging due to diverse types of database engines, different operational modes, and variable anomaly patterns. To relieve database operators from manual anomaly diagnosis and alarm storm, we propose FluxInfer, a framework to accurately and rapidly localize root cause related KPIs for database performance anomaly. It first constructs a Weighted Undirected Dependency Graph (WUDG) to represent the dependency relationships of anomalous KPIs accurately, and then applies a weighted PageRank algorithm to localize root cause related KPIs. The testbed evaluation experiments show that the AC@3, AC@5, and Avg@5 of FluxInfer are 0.90, 0.95, and 0.77, outperforming nine baselines by 64%, 60%, and 53% on average, respectively.","PeriodicalId":226034,"journal":{"name":"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"FluxInfer: Automatic Diagnosis of Performance Anomaly for Online Database System\",\"authors\":\"Ping Liu, Shenglin Zhang, Yongqian Sun, Yuan Meng, Jiahai Yang, Dan Pei\",\"doi\":\"10.1109/IPCCC50635.2020.9391550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The root cause diagnosis of performance anomaly for online database anomalies is challenging due to diverse types of database engines, different operational modes, and variable anomaly patterns. To relieve database operators from manual anomaly diagnosis and alarm storm, we propose FluxInfer, a framework to accurately and rapidly localize root cause related KPIs for database performance anomaly. It first constructs a Weighted Undirected Dependency Graph (WUDG) to represent the dependency relationships of anomalous KPIs accurately, and then applies a weighted PageRank algorithm to localize root cause related KPIs. The testbed evaluation experiments show that the AC@3, AC@5, and Avg@5 of FluxInfer are 0.90, 0.95, and 0.77, outperforming nine baselines by 64%, 60%, and 53% on average, respectively.\",\"PeriodicalId\":226034,\"journal\":{\"name\":\"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPCCC50635.2020.9391550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 39th International Performance Computing and Communications Conference (IPCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPCCC50635.2020.9391550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于数据库引擎类型、运行模式和异常模式的不同,在线数据库异常性能异常的根本原因诊断具有一定的挑战性。为了使数据库操作人员从人工异常诊断和警报风暴中解脱出来,我们提出了FluxInfer框架,该框架可以准确快速地定位数据库性能异常的根本原因相关kpi。首先构建加权无向依赖图(Weighted Undirected Dependency Graph, WUDG)来准确表示异常kpi之间的依赖关系,然后应用加权PageRank算法来定位与根本原因相关的kpi。试验台评价实验表明,FluxInfer的AC@3、AC@5和Avg@5分别为0.90、0.95和0.77,分别比9条基线平均高出64%、60%和53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FluxInfer: Automatic Diagnosis of Performance Anomaly for Online Database System
The root cause diagnosis of performance anomaly for online database anomalies is challenging due to diverse types of database engines, different operational modes, and variable anomaly patterns. To relieve database operators from manual anomaly diagnosis and alarm storm, we propose FluxInfer, a framework to accurately and rapidly localize root cause related KPIs for database performance anomaly. It first constructs a Weighted Undirected Dependency Graph (WUDG) to represent the dependency relationships of anomalous KPIs accurately, and then applies a weighted PageRank algorithm to localize root cause related KPIs. The testbed evaluation experiments show that the AC@3, AC@5, and Avg@5 of FluxInfer are 0.90, 0.95, and 0.77, outperforming nine baselines by 64%, 60%, and 53% on average, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信