微分代数系统边值问题的数值解

K. Clark, L. Petzold
{"title":"微分代数系统边值问题的数值解","authors":"K. Clark, L. Petzold","doi":"10.1137/0910053","DOIUrl":null,"url":null,"abstract":"This paper extends the theory of shooting and finite-difference methods for linear boundary value problems (BVPs) in ordinary differential equations (ODEs) to BVPs in differential-algebraic equations (DAEs) of the form \\[ \\begin{gathered} E(t)\\mathcal{Y}'(t) + F(t)\\mathcal{Y}(t) = f(t),t \\in [a,b], \\hfill \\\\ B_a \\mathcal{Y}(a) + B_b \\mathcal{Y} (b) = \\beta , \\hfill \\\\ \\end{gathered} \\] where $E( \\cdot )$, $F( \\cdot )$, and $f( \\cdot )$ are sufficiently smooth and the DAE initial value problem (IVP) is solvable. $E(t)$ may be singular on $[a,b]$ with variable rank, and the DAE may have an index that is larger than one. When $E(t)$ is nonsingular, the singular theory reduces to the standard theory for ODEs. The convergence results for backward differentiation formulas and Runge–Kutta methods for several classes of DAE IVPs are applied to obtain convergence of the corresponding shooting and finite-difference methods for these DAE boundary value problems. These methods can be implemented directly without having to (1) regularize the system to a lower index DAE or ODE or (2) convert the system to a particular canonical structure. Finally, some numerical experiments that illustrate these results are presented.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Numerical solution of boundary value problems in differential-algebraic systems\",\"authors\":\"K. Clark, L. Petzold\",\"doi\":\"10.1137/0910053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the theory of shooting and finite-difference methods for linear boundary value problems (BVPs) in ordinary differential equations (ODEs) to BVPs in differential-algebraic equations (DAEs) of the form \\\\[ \\\\begin{gathered} E(t)\\\\mathcal{Y}'(t) + F(t)\\\\mathcal{Y}(t) = f(t),t \\\\in [a,b], \\\\hfill \\\\\\\\ B_a \\\\mathcal{Y}(a) + B_b \\\\mathcal{Y} (b) = \\\\beta , \\\\hfill \\\\\\\\ \\\\end{gathered} \\\\] where $E( \\\\cdot )$, $F( \\\\cdot )$, and $f( \\\\cdot )$ are sufficiently smooth and the DAE initial value problem (IVP) is solvable. $E(t)$ may be singular on $[a,b]$ with variable rank, and the DAE may have an index that is larger than one. When $E(t)$ is nonsingular, the singular theory reduces to the standard theory for ODEs. The convergence results for backward differentiation formulas and Runge–Kutta methods for several classes of DAE IVPs are applied to obtain convergence of the corresponding shooting and finite-difference methods for these DAE boundary value problems. These methods can be implemented directly without having to (1) regularize the system to a lower index DAE or ODE or (2) convert the system to a particular canonical structure. Finally, some numerical experiments that illustrate these results are presented.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文将常微分方程线性边值问题的射击理论和有限差分方法推广到形式为\[ \begin{gathered} E(t)\mathcal{Y}'(t) + F(t)\mathcal{Y}(t) = f(t),t \in [a,b], \hfill \\ B_a \mathcal{Y}(a) + B_b \mathcal{Y} (b) = \beta , \hfill \\ \end{gathered} \]的微分代数方程的边值问题,其中$E( \cdot )$, $F( \cdot )$, $f( \cdot )$是足够光滑的,且DAE初值问题(IVP)是可解的。$E(t)$在$[a,b]$上可以是单数,并且具有可变秩,DAE的索引可以大于1。当$E(t)$为非奇异时,奇异理论简化为ode的标准理论。利用后向微分公式和龙格-库塔方法对几类DAE边值问题的收敛性结果,得到了相应的射击法和有限差分法对这些DAE边值问题的收敛性。这些方法可以直接实现,而不必(1)将系统正则化为较低的索引DAE或ODE,或者(2)将系统转换为特定的规范结构。最后,给出了一些数值实验来说明这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical solution of boundary value problems in differential-algebraic systems
This paper extends the theory of shooting and finite-difference methods for linear boundary value problems (BVPs) in ordinary differential equations (ODEs) to BVPs in differential-algebraic equations (DAEs) of the form \[ \begin{gathered} E(t)\mathcal{Y}'(t) + F(t)\mathcal{Y}(t) = f(t),t \in [a,b], \hfill \\ B_a \mathcal{Y}(a) + B_b \mathcal{Y} (b) = \beta , \hfill \\ \end{gathered} \] where $E( \cdot )$, $F( \cdot )$, and $f( \cdot )$ are sufficiently smooth and the DAE initial value problem (IVP) is solvable. $E(t)$ may be singular on $[a,b]$ with variable rank, and the DAE may have an index that is larger than one. When $E(t)$ is nonsingular, the singular theory reduces to the standard theory for ODEs. The convergence results for backward differentiation formulas and Runge–Kutta methods for several classes of DAE IVPs are applied to obtain convergence of the corresponding shooting and finite-difference methods for these DAE boundary value problems. These methods can be implemented directly without having to (1) regularize the system to a lower index DAE or ODE or (2) convert the system to a particular canonical structure. Finally, some numerical experiments that illustrate these results are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信