身份交换中的信息瓶颈解纠缠

Gege Gao, Huaibo Huang, Chaoyou Fu, Zhaoyang Li, R. He
{"title":"身份交换中的信息瓶颈解纠缠","authors":"Gege Gao, Huaibo Huang, Chaoyou Fu, Zhaoyang Li, R. He","doi":"10.1109/CVPR46437.2021.00341","DOIUrl":null,"url":null,"abstract":"Improving the performance of face forgery detectors often requires more identity-swapped images of higher-quality. One core objective of identity swapping is to generate identity-discriminative faces that are distinct from the target while identical to the source. To this end, properly disentangling identity and identity-irrelevant information is critical and remains a challenging endeavor. In this work, we propose a novel information disentangling and swapping network, called InfoSwap, to extract the most expressive information for identity representation from a pre-trained face recognition model. The key insight of our method is to formulate the learning of disentangled representations as optimizing an information bottleneck tradeoff, in terms of finding an optimal compression of the pretrained latent features. Moreover, a novel identity contrastive loss is proposed for further disentanglement by requiring a proper distance between the generated identity and the target. While the most prior works have focused on using various loss functions to implicitly guide the learning of representations, we demonstrate that our model can provide explicit supervision for learning disentangled representations, achieving impressive performance in generating more identity-discriminative swapped faces.","PeriodicalId":339646,"journal":{"name":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Information Bottleneck Disentanglement for Identity Swapping\",\"authors\":\"Gege Gao, Huaibo Huang, Chaoyou Fu, Zhaoyang Li, R. He\",\"doi\":\"10.1109/CVPR46437.2021.00341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the performance of face forgery detectors often requires more identity-swapped images of higher-quality. One core objective of identity swapping is to generate identity-discriminative faces that are distinct from the target while identical to the source. To this end, properly disentangling identity and identity-irrelevant information is critical and remains a challenging endeavor. In this work, we propose a novel information disentangling and swapping network, called InfoSwap, to extract the most expressive information for identity representation from a pre-trained face recognition model. The key insight of our method is to formulate the learning of disentangled representations as optimizing an information bottleneck tradeoff, in terms of finding an optimal compression of the pretrained latent features. Moreover, a novel identity contrastive loss is proposed for further disentanglement by requiring a proper distance between the generated identity and the target. While the most prior works have focused on using various loss functions to implicitly guide the learning of representations, we demonstrate that our model can provide explicit supervision for learning disentangled representations, achieving impressive performance in generating more identity-discriminative swapped faces.\",\"PeriodicalId\":339646,\"journal\":{\"name\":\"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR46437.2021.00341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR46437.2021.00341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

提高人脸伪造检测器的性能通常需要更多高质量的身份交换图像。身份交换的一个核心目标是生成与目标不同而与源相同的身份判别脸。为此,正确地分离身份和与身份无关的信息至关重要,并且仍然是一项具有挑战性的工作。在这项工作中,我们提出了一种新的信息解纠缠和交换网络,称为InfoSwap,从预训练的人脸识别模型中提取最具表现力的信息用于身份表示。我们的方法的关键见解是将解纠缠表示的学习表述为优化信息瓶颈权衡,以找到预训练潜在特征的最佳压缩。此外,为了进一步解除纠缠,提出了一种新的身份对比损失,该损失要求生成的身份与目标之间有适当的距离。虽然大多数先前的工作都集中在使用各种损失函数来隐式指导表征的学习,但我们证明了我们的模型可以为学习解纠缠表征提供显式监督,在生成更多身份判别交换面方面取得了令人印象深刻的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information Bottleneck Disentanglement for Identity Swapping
Improving the performance of face forgery detectors often requires more identity-swapped images of higher-quality. One core objective of identity swapping is to generate identity-discriminative faces that are distinct from the target while identical to the source. To this end, properly disentangling identity and identity-irrelevant information is critical and remains a challenging endeavor. In this work, we propose a novel information disentangling and swapping network, called InfoSwap, to extract the most expressive information for identity representation from a pre-trained face recognition model. The key insight of our method is to formulate the learning of disentangled representations as optimizing an information bottleneck tradeoff, in terms of finding an optimal compression of the pretrained latent features. Moreover, a novel identity contrastive loss is proposed for further disentanglement by requiring a proper distance between the generated identity and the target. While the most prior works have focused on using various loss functions to implicitly guide the learning of representations, we demonstrate that our model can provide explicit supervision for learning disentangled representations, achieving impressive performance in generating more identity-discriminative swapped faces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信