流固耦合法研究末级长叶片非定常流场激励及力学性能

Jun Li, Zhigang Li, Liming Song, Qinghua Deng
{"title":"流固耦合法研究末级长叶片非定常流场激励及力学性能","authors":"Jun Li, Zhigang Li, Liming Song, Qinghua Deng","doi":"10.1115/IMECE2018-86950","DOIUrl":null,"url":null,"abstract":"Detailed numerical investigations on the unsteady flow excitation characteristics and mechanical performance under unsteady surface pressure of last turbine stage long blade are conducted by applying sliding interface method and fluid-structure interaction approach. Unsteady aerodynamic performance of turbine stage is analyzed through solving the three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solution and k-ε turbulent model using commercial CFD software ANSYS-CFX. The computational domains include last stage stator domain, rotor domain, shroud domain and curved diffusor. Unsteady pressure on long blade surfaces in every time step is transferred to the mechanical grids of long blade after interpolated in the fluid-solid interface. The mechanical performance of long blade with damper shroud and part-span connector (PSC) is obtained using finite element method (FEM) while considering the unsteady aerodynamic load and nonlinear contact between adjacent damping tip-shroud and PSC. The numerical results show that static pressure on long blade surface presents obvious periodic fluctuation; with the decrease of mass flow, blade loading reduces obviously and separation vortex appears in the diffusor and extends to the rotor passages; the frequency of separation vortex is about 126 Hz; the maximum displacement and maximum Von-Mises stress of long blade both show periodic features.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Investigations on Unsteady Flow Excitation and Mechanical Performance of Last Turbine Stage Long Blade Using Fluid-Structure Interaction Method\",\"authors\":\"Jun Li, Zhigang Li, Liming Song, Qinghua Deng\",\"doi\":\"10.1115/IMECE2018-86950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detailed numerical investigations on the unsteady flow excitation characteristics and mechanical performance under unsteady surface pressure of last turbine stage long blade are conducted by applying sliding interface method and fluid-structure interaction approach. Unsteady aerodynamic performance of turbine stage is analyzed through solving the three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solution and k-ε turbulent model using commercial CFD software ANSYS-CFX. The computational domains include last stage stator domain, rotor domain, shroud domain and curved diffusor. Unsteady pressure on long blade surfaces in every time step is transferred to the mechanical grids of long blade after interpolated in the fluid-solid interface. The mechanical performance of long blade with damper shroud and part-span connector (PSC) is obtained using finite element method (FEM) while considering the unsteady aerodynamic load and nonlinear contact between adjacent damping tip-shroud and PSC. The numerical results show that static pressure on long blade surface presents obvious periodic fluctuation; with the decrease of mass flow, blade loading reduces obviously and separation vortex appears in the diffusor and extends to the rotor passages; the frequency of separation vortex is about 126 Hz; the maximum displacement and maximum Von-Mises stress of long blade both show periodic features.\",\"PeriodicalId\":119220,\"journal\":{\"name\":\"Volume 1: Advances in Aerospace Technology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IMECE2018-86950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用滑动界面法和流固耦合法对末级长叶片在非定常面压作用下的非定常流场激励特性和力学性能进行了详细的数值研究。利用商业CFD软件ANSYS-CFX,通过求解三维reynolds - average Navier-Stokes (RANS)解和k-ε湍流模型,分析了涡轮级的非定常气动性能。计算域包括末级定子域、转子域、叶冠域和弯曲扩散域。每个时间步长叶片表面的非定常压力在流固界面内插值后传递到长叶片的机械网格上。考虑非定常气动载荷和相邻阻尼叶冠与部分跨连接件之间的非线性接触,采用有限元法对带阻尼叶冠和部分跨连接件的长叶片进行了力学性能分析。数值计算结果表明,长叶片表面静压存在明显的周期性波动;随着质量流量的减小,叶片负荷明显减小,分离涡在扩压器内出现并向转子通道延伸;分离涡的频率约为126 Hz;长叶片的最大位移和最大Von-Mises应力均呈现周期性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigations on Unsteady Flow Excitation and Mechanical Performance of Last Turbine Stage Long Blade Using Fluid-Structure Interaction Method
Detailed numerical investigations on the unsteady flow excitation characteristics and mechanical performance under unsteady surface pressure of last turbine stage long blade are conducted by applying sliding interface method and fluid-structure interaction approach. Unsteady aerodynamic performance of turbine stage is analyzed through solving the three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solution and k-ε turbulent model using commercial CFD software ANSYS-CFX. The computational domains include last stage stator domain, rotor domain, shroud domain and curved diffusor. Unsteady pressure on long blade surfaces in every time step is transferred to the mechanical grids of long blade after interpolated in the fluid-solid interface. The mechanical performance of long blade with damper shroud and part-span connector (PSC) is obtained using finite element method (FEM) while considering the unsteady aerodynamic load and nonlinear contact between adjacent damping tip-shroud and PSC. The numerical results show that static pressure on long blade surface presents obvious periodic fluctuation; with the decrease of mass flow, blade loading reduces obviously and separation vortex appears in the diffusor and extends to the rotor passages; the frequency of separation vortex is about 126 Hz; the maximum displacement and maximum Von-Mises stress of long blade both show periodic features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信