{"title":"链接Łukasiewicz逻辑和布尔最大可满足性","authors":"Sandro Preto, F. Manyà, M. Finger","doi":"10.1109/ISMVL57333.2023.00040","DOIUrl":null,"url":null,"abstract":"We define a new reduction from the Boolean Maximum Satisfiability problem (MaxSAT) to the Satisfiability problem (SAT) of Łukasiewicz logic. This reduction is particularly interesting from a problem solving perspective because it shows how to encode cardinality constraints using Łukasiewicz logic. Moreover, we describe how to implement a MaxSAT solver using the proposed reduction.","PeriodicalId":419220,"journal":{"name":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Linking Łukasiewicz Logic and Boolean Maximum Satisfiability\",\"authors\":\"Sandro Preto, F. Manyà, M. Finger\",\"doi\":\"10.1109/ISMVL57333.2023.00040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a new reduction from the Boolean Maximum Satisfiability problem (MaxSAT) to the Satisfiability problem (SAT) of Łukasiewicz logic. This reduction is particularly interesting from a problem solving perspective because it shows how to encode cardinality constraints using Łukasiewicz logic. Moreover, we describe how to implement a MaxSAT solver using the proposed reduction.\",\"PeriodicalId\":419220,\"journal\":{\"name\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL57333.2023.00040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL57333.2023.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Linking Łukasiewicz Logic and Boolean Maximum Satisfiability
We define a new reduction from the Boolean Maximum Satisfiability problem (MaxSAT) to the Satisfiability problem (SAT) of Łukasiewicz logic. This reduction is particularly interesting from a problem solving perspective because it shows how to encode cardinality constraints using Łukasiewicz logic. Moreover, we describe how to implement a MaxSAT solver using the proposed reduction.