GEL估计的错规范鲁棒自举的渐近改进

Seojeong Lee
{"title":"GEL估计的错规范鲁棒自举的渐近改进","authors":"Seojeong Lee","doi":"10.2139/ssrn.2393191","DOIUrl":null,"url":null,"abstract":"I propose a nonparametric iid bootstrap procedure for the empirical likelihood, the exponential tilting, and the exponentially tilted empirical likelihood estimators that achieves sharp asymptotic refinements for t tests and confidence intervals based on such estimators. Furthermore, the proposed bootstrap is robust to model misspecification, i.e., it achieves asymptotic refinements regardless of whether the assumed moment condition model is correctly specified or not. This result is new, because asymptotic refinements of the bootstrap based on these estimators have not been established in the literature even under correct model specification. Monte Carlo experiments are conducted in dynamic panel data setting to support the theoretical finding. As an application, bootstrap confidence intervals for the returns to schooling of Hellerstein and Imbens (1999) are calculated. The returns to schooling may be higher.","PeriodicalId":180753,"journal":{"name":"UNSW: Economics (Topic)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymptotic Refinements of a Misspecification-Robust Bootstrap for GEL Estimators\",\"authors\":\"Seojeong Lee\",\"doi\":\"10.2139/ssrn.2393191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I propose a nonparametric iid bootstrap procedure for the empirical likelihood, the exponential tilting, and the exponentially tilted empirical likelihood estimators that achieves sharp asymptotic refinements for t tests and confidence intervals based on such estimators. Furthermore, the proposed bootstrap is robust to model misspecification, i.e., it achieves asymptotic refinements regardless of whether the assumed moment condition model is correctly specified or not. This result is new, because asymptotic refinements of the bootstrap based on these estimators have not been established in the literature even under correct model specification. Monte Carlo experiments are conducted in dynamic panel data setting to support the theoretical finding. As an application, bootstrap confidence intervals for the returns to schooling of Hellerstein and Imbens (1999) are calculated. The returns to schooling may be higher.\",\"PeriodicalId\":180753,\"journal\":{\"name\":\"UNSW: Economics (Topic)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UNSW: Economics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2393191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNSW: Economics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2393191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我为经验似然、指数倾斜和指数倾斜的经验似然估计量提出了一个非参数iid自举过程,该过程实现了基于此类估计量的t检验和置信区间的尖锐渐近改进。此外,所提出的自举对模型的错误规范具有鲁棒性,即无论假设的力矩条件模型是否正确指定,它都能实现渐近细化。这个结果是新的,因为基于这些估计的自举的渐近改进在文献中没有建立,即使在正确的模型规范下。在动态面板数据设置中进行蒙特卡罗实验以支持理论发现。作为应用,我们计算了Hellerstein和Imbens(1999)的返校收益率的自举置信区间。上学的回报可能更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Refinements of a Misspecification-Robust Bootstrap for GEL Estimators
I propose a nonparametric iid bootstrap procedure for the empirical likelihood, the exponential tilting, and the exponentially tilted empirical likelihood estimators that achieves sharp asymptotic refinements for t tests and confidence intervals based on such estimators. Furthermore, the proposed bootstrap is robust to model misspecification, i.e., it achieves asymptotic refinements regardless of whether the assumed moment condition model is correctly specified or not. This result is new, because asymptotic refinements of the bootstrap based on these estimators have not been established in the literature even under correct model specification. Monte Carlo experiments are conducted in dynamic panel data setting to support the theoretical finding. As an application, bootstrap confidence intervals for the returns to schooling of Hellerstein and Imbens (1999) are calculated. The returns to schooling may be higher.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信