在监视应用中使用时空轨迹体积的活动分析

F. Janoos, Shantanu Singh, M. Irfanoglu, R. Machiraju, Richard E. Parent
{"title":"在监视应用中使用时空轨迹体积的活动分析","authors":"F. Janoos, Shantanu Singh, M. Irfanoglu, R. Machiraju, Richard E. Parent","doi":"10.1109/VAST.2007.4388990","DOIUrl":null,"url":null,"abstract":"In this paper, we present a system to analyze activities and detect anomalies in a surveillance application, which exploits the intuition and experience of security and surveillance experts through an easy- to-use visual feedback loop. The multi-scale and location specific nature of behavior patterns in space and time is captured using a wavelet-based feature descriptor. The system learns the fundamental descriptions of the behavior patterns in a semi-supervised fashion by the higher order singular value decomposition of the space described by the training data. This training process is guided and refined by the users in an intuitive fashion. Anomalies are detected by projecting the test data into this multi-linear space and are visualized by the system to direct the attention of the user to potential problem spots. We tested our system on real-world surveillance data, and it satisfied the security concerns of the environment.","PeriodicalId":227910,"journal":{"name":"2007 IEEE Symposium on Visual Analytics Science and Technology","volume":"342 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Activity Analysis Using Spatio-Temporal Trajectory Volumes in Surveillance Applications\",\"authors\":\"F. Janoos, Shantanu Singh, M. Irfanoglu, R. Machiraju, Richard E. Parent\",\"doi\":\"10.1109/VAST.2007.4388990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a system to analyze activities and detect anomalies in a surveillance application, which exploits the intuition and experience of security and surveillance experts through an easy- to-use visual feedback loop. The multi-scale and location specific nature of behavior patterns in space and time is captured using a wavelet-based feature descriptor. The system learns the fundamental descriptions of the behavior patterns in a semi-supervised fashion by the higher order singular value decomposition of the space described by the training data. This training process is guided and refined by the users in an intuitive fashion. Anomalies are detected by projecting the test data into this multi-linear space and are visualized by the system to direct the attention of the user to potential problem spots. We tested our system on real-world surveillance data, and it satisfied the security concerns of the environment.\",\"PeriodicalId\":227910,\"journal\":{\"name\":\"2007 IEEE Symposium on Visual Analytics Science and Technology\",\"volume\":\"342 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Visual Analytics Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2007.4388990\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Visual Analytics Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2007.4388990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

在本文中,我们提出了一个系统来分析活动和检测监控应用中的异常,它利用了安全和监控专家的直觉和经验,通过一个易于使用的视觉反馈回路。使用基于小波的特征描述符捕获行为模式在空间和时间上的多尺度和位置特定性质。系统通过对训练数据描述的空间进行高阶奇异值分解,以半监督的方式学习行为模式的基本描述。这个培训过程是由用户以直观的方式指导和完善的。通过将测试数据投射到这个多线性空间中来检测异常,并由系统可视化,以引导用户注意潜在的问题点。我们在真实世界的监控数据上测试了我们的系统,它满足了环境安全方面的担忧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Activity Analysis Using Spatio-Temporal Trajectory Volumes in Surveillance Applications
In this paper, we present a system to analyze activities and detect anomalies in a surveillance application, which exploits the intuition and experience of security and surveillance experts through an easy- to-use visual feedback loop. The multi-scale and location specific nature of behavior patterns in space and time is captured using a wavelet-based feature descriptor. The system learns the fundamental descriptions of the behavior patterns in a semi-supervised fashion by the higher order singular value decomposition of the space described by the training data. This training process is guided and refined by the users in an intuitive fashion. Anomalies are detected by projecting the test data into this multi-linear space and are visualized by the system to direct the attention of the user to potential problem spots. We tested our system on real-world surveillance data, and it satisfied the security concerns of the environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信