并行处理系统的符号综合

James J. Liu, M. Ercegovac
{"title":"并行处理系统的符号综合","authors":"James J. Liu, M. Ercegovac","doi":"10.1109/IPPS.1993.262827","DOIUrl":null,"url":null,"abstract":"The authors derive high-level parallel processing arrays for matrix computations using symbolic transformations. They propose a graphical language MGD (Mesh Graph Descriptor) as the basis for the transformations. The input to the synthesis system is the single-assignment form of matrix algorithms and the output is a structure of the synthesized parallel arrays. The synthesized arrays produced range from fully-parallel systolic arrays to limited-size parallel arrays. The approach is concise, verifiable, and easy to use. An example of LU decomposition illustrates the approach.<<ETX>>","PeriodicalId":248927,"journal":{"name":"[1993] Proceedings Seventh International Parallel Processing Symposium","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Symbolic synthesis of parallel processing systems\",\"authors\":\"James J. Liu, M. Ercegovac\",\"doi\":\"10.1109/IPPS.1993.262827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors derive high-level parallel processing arrays for matrix computations using symbolic transformations. They propose a graphical language MGD (Mesh Graph Descriptor) as the basis for the transformations. The input to the synthesis system is the single-assignment form of matrix algorithms and the output is a structure of the synthesized parallel arrays. The synthesized arrays produced range from fully-parallel systolic arrays to limited-size parallel arrays. The approach is concise, verifiable, and easy to use. An example of LU decomposition illustrates the approach.<<ETX>>\",\"PeriodicalId\":248927,\"journal\":{\"name\":\"[1993] Proceedings Seventh International Parallel Processing Symposium\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993] Proceedings Seventh International Parallel Processing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPPS.1993.262827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993] Proceedings Seventh International Parallel Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPPS.1993.262827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作者使用符号变换推导出用于矩阵计算的高级并行处理数组。他们提出了一种图形语言MGD(网格图描述符)作为转换的基础。合成系统的输入是矩阵算法的单赋值形式,输出是合成的并行阵列结构。合成的阵列范围从全平行收缩阵列到有限大小的平行阵列。该方法简洁、可验证且易于使用。一个逻辑单元分解的例子说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic synthesis of parallel processing systems
The authors derive high-level parallel processing arrays for matrix computations using symbolic transformations. They propose a graphical language MGD (Mesh Graph Descriptor) as the basis for the transformations. The input to the synthesis system is the single-assignment form of matrix algorithms and the output is a structure of the synthesized parallel arrays. The synthesized arrays produced range from fully-parallel systolic arrays to limited-size parallel arrays. The approach is concise, verifiable, and easy to use. An example of LU decomposition illustrates the approach.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信