以Si量子点作浮门的65nm FGMOS电容器的记忆特性

R. Dhavse, Fyroos Muhammed, Chetna Sinha, V. Mishra, R. Patrikar
{"title":"以Si量子点作浮门的65nm FGMOS电容器的记忆特性","authors":"R. Dhavse, Fyroos Muhammed, Chetna Sinha, V. Mishra, R. Patrikar","doi":"10.1109/INDCON.2013.6725910","DOIUrl":null,"url":null,"abstract":"Tox scaling, which is otherwise saturated, is expected to get improved by the use of quantum dots in the floating gate layer of flash memory devices. Silicon quantum dots serve the task of multiple charge storage nodes and allow the use of ultra-thin tunnel oxides. Here, conventional Floating Gate Metal Oxide Semiconductor (FGMOS) gate stack capacitor is compared with similar structure where silicon nanocrystals are embedded in a thin oxide layer to behave like a floating gate. Their C-V curves exhibit similar memory effects. In this work, oxide thickness of 3.3 nm is used for target technology of 65 nm. Device threshold of 0.2 V is obtained with supply voltage of 1 V. The structures exhibit significant memory window with tunneling voltages as less as 12 V for a 65 nm device. All the simulations are performed using Sentaurus TCAD tools.","PeriodicalId":313185,"journal":{"name":"2013 Annual IEEE India Conference (INDICON)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Memory characteristics of a 65 nm FGMOS capacitor with Si quantum dots as floating gates\",\"authors\":\"R. Dhavse, Fyroos Muhammed, Chetna Sinha, V. Mishra, R. Patrikar\",\"doi\":\"10.1109/INDCON.2013.6725910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tox scaling, which is otherwise saturated, is expected to get improved by the use of quantum dots in the floating gate layer of flash memory devices. Silicon quantum dots serve the task of multiple charge storage nodes and allow the use of ultra-thin tunnel oxides. Here, conventional Floating Gate Metal Oxide Semiconductor (FGMOS) gate stack capacitor is compared with similar structure where silicon nanocrystals are embedded in a thin oxide layer to behave like a floating gate. Their C-V curves exhibit similar memory effects. In this work, oxide thickness of 3.3 nm is used for target technology of 65 nm. Device threshold of 0.2 V is obtained with supply voltage of 1 V. The structures exhibit significant memory window with tunneling voltages as less as 12 V for a 65 nm device. All the simulations are performed using Sentaurus TCAD tools.\",\"PeriodicalId\":313185,\"journal\":{\"name\":\"2013 Annual IEEE India Conference (INDICON)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2013.6725910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2013.6725910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过在闪存器件的浮栅层中使用量子点,有望改善Tox缩放,否则它是饱和的。硅量子点服务于多个电荷存储节点的任务,并允许使用超薄隧道氧化物。本文将传统的浮栅金属氧化物半导体(FGMOS)栅极堆叠电容器与类似的结构进行了比较,其中硅纳米晶体嵌入薄氧化层以表现为浮栅。它们的C-V曲线表现出类似的记忆效应。在这项工作中,氧化物厚度为3.3 nm,用于65 nm的靶技术。电源电压为1v时,器件阈值为0.2 V。对于65nm器件,该结构具有显著的记忆窗口,隧穿电压小于12v。所有的模拟都是使用Sentaurus TCAD工具进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory characteristics of a 65 nm FGMOS capacitor with Si quantum dots as floating gates
Tox scaling, which is otherwise saturated, is expected to get improved by the use of quantum dots in the floating gate layer of flash memory devices. Silicon quantum dots serve the task of multiple charge storage nodes and allow the use of ultra-thin tunnel oxides. Here, conventional Floating Gate Metal Oxide Semiconductor (FGMOS) gate stack capacitor is compared with similar structure where silicon nanocrystals are embedded in a thin oxide layer to behave like a floating gate. Their C-V curves exhibit similar memory effects. In this work, oxide thickness of 3.3 nm is used for target technology of 65 nm. Device threshold of 0.2 V is obtained with supply voltage of 1 V. The structures exhibit significant memory window with tunneling voltages as less as 12 V for a 65 nm device. All the simulations are performed using Sentaurus TCAD tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信