基于HMM模型的自动扶梯智能监控方法

Lulu Zhang, Shimin Zhao, Hu Liu, Weilong Wang, Jiajian Wang
{"title":"基于HMM模型的自动扶梯智能监控方法","authors":"Lulu Zhang, Shimin Zhao, Hu Liu, Weilong Wang, Jiajian Wang","doi":"10.1109/ICDSBA51020.2020.00037","DOIUrl":null,"url":null,"abstract":"In order to effectively escalator working status, ensure safe operation and prevent failure, this paper proposes an escalator monitoring method based on hidden Markov (HMM) model. This article focuses on taking the main axis of the escalator as an example, classifying its vibration intensity, using the HMM model to predict its state, realizing fault warning, and ensuring the safe operation of the escalator.","PeriodicalId":354742,"journal":{"name":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Monitoring Method of Escalator Based on HMM Model\",\"authors\":\"Lulu Zhang, Shimin Zhao, Hu Liu, Weilong Wang, Jiajian Wang\",\"doi\":\"10.1109/ICDSBA51020.2020.00037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to effectively escalator working status, ensure safe operation and prevent failure, this paper proposes an escalator monitoring method based on hidden Markov (HMM) model. This article focuses on taking the main axis of the escalator as an example, classifying its vibration intensity, using the HMM model to predict its state, realizing fault warning, and ensuring the safe operation of the escalator.\",\"PeriodicalId\":354742,\"journal\":{\"name\":\"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSBA51020.2020.00037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th Annual International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA51020.2020.00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了有效地掌握自动扶梯的工作状态,保证安全运行,防止故障的发生,本文提出了一种基于隐马尔可夫模型的自动扶梯监控方法。本文重点以自动扶梯主轴为例,对其振动强度进行分类,利用HMM模型对其状态进行预测,实现故障预警,保证自动扶梯的安全运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Monitoring Method of Escalator Based on HMM Model
In order to effectively escalator working status, ensure safe operation and prevent failure, this paper proposes an escalator monitoring method based on hidden Markov (HMM) model. This article focuses on taking the main axis of the escalator as an example, classifying its vibration intensity, using the HMM model to predict its state, realizing fault warning, and ensuring the safe operation of the escalator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信