WO3传感器阵列与模式识别相结合的气体识别方法

Rabeb Faleh, M. Othman, S. Gomri, K. Aguir, A. Kachouri
{"title":"WO3传感器阵列与模式识别相结合的气体识别方法","authors":"Rabeb Faleh, M. Othman, S. Gomri, K. Aguir, A. Kachouri","doi":"10.1109/SSD.2016.7473744","DOIUrl":null,"url":null,"abstract":"This paper presents the performance of gas sensors as electronic nose coupled with pattern recognition method for gases identification. In fact, the implementation of the electronic nose in a characterization process is based on two fundamental phases: a learning phase and a phase of identification. That is why we need an accurate extraction method in order to obtain performant classification. In this study, we propose to extract transient parameters in a dynamic mode: derivate and integral. The performance of these features is validated by the analysis method: principal component analysis (PCA) and K nearest neighbors (KNN), which present 98, 74% rate classification.","PeriodicalId":149580,"journal":{"name":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"WO3 sensors array coupled with pattern recognition method for gases identification\",\"authors\":\"Rabeb Faleh, M. Othman, S. Gomri, K. Aguir, A. Kachouri\",\"doi\":\"10.1109/SSD.2016.7473744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the performance of gas sensors as electronic nose coupled with pattern recognition method for gases identification. In fact, the implementation of the electronic nose in a characterization process is based on two fundamental phases: a learning phase and a phase of identification. That is why we need an accurate extraction method in order to obtain performant classification. In this study, we propose to extract transient parameters in a dynamic mode: derivate and integral. The performance of these features is validated by the analysis method: principal component analysis (PCA) and K nearest neighbors (KNN), which present 98, 74% rate classification.\",\"PeriodicalId\":149580,\"journal\":{\"name\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2016.7473744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2016.7473744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了电子鼻与模式识别相结合的气体传感器的气体识别性能。事实上,电子鼻在表征过程中的实现基于两个基本阶段:学习阶段和识别阶段。这就是为什么我们需要一种准确的提取方法来获得高性能的分类。在这项研究中,我们提出了一种动态模式提取瞬态参数:导数和积分。通过主成分分析(PCA)和K近邻分析(KNN)验证了这些特征的性能,它们的分类率为98.74%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WO3 sensors array coupled with pattern recognition method for gases identification
This paper presents the performance of gas sensors as electronic nose coupled with pattern recognition method for gases identification. In fact, the implementation of the electronic nose in a characterization process is based on two fundamental phases: a learning phase and a phase of identification. That is why we need an accurate extraction method in order to obtain performant classification. In this study, we propose to extract transient parameters in a dynamic mode: derivate and integral. The performance of these features is validated by the analysis method: principal component analysis (PCA) and K nearest neighbors (KNN), which present 98, 74% rate classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信