稳定光电振荡器的频率补偿范围放大

Jian Dai, Yao Zeng, Xiaoyang Wang, A. Liu, Kun Xu
{"title":"稳定光电振荡器的频率补偿范围放大","authors":"Jian Dai, Yao Zeng, Xiaoyang Wang, A. Liu, Kun Xu","doi":"10.1109/ACP.2018.8595884","DOIUrl":null,"url":null,"abstract":"A novel stabilization scheme based on the frequency conversion pair has been proposed and experimentally demonstrated to improve the frequency-drift compensation range for the stabilized optoelectronic oscillator. The cavity length is adjusted by controlling the phase shift of oscillation signal at relative low frequency via frequency division and frequency multiplication. In the proof-of-concept experiment, a 10 GHz signal has been successfully generated with the phase noise about -123 dBc/Hz at 10 kHz offset frequency assisted by the external triggering. The optoelectronic resonant cavity is tuned at 5 GHz via divide-by-2 prescaler and frequency doubler, and the frequency compensation range can be enlarged more than 3 times compared with conventional phase-locked-loop based stabilization method. Finally, the stability of the locked optoelectronic oscillator is improved from 4.1×10-7 to 1.1×10-10 at 1000s averaging time.","PeriodicalId":431579,"journal":{"name":"2018 Asia Communications and Photonics Conference (ACP)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency Compensation Range Amplification for the Stabilized Optoelectronic Oscillator\",\"authors\":\"Jian Dai, Yao Zeng, Xiaoyang Wang, A. Liu, Kun Xu\",\"doi\":\"10.1109/ACP.2018.8595884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel stabilization scheme based on the frequency conversion pair has been proposed and experimentally demonstrated to improve the frequency-drift compensation range for the stabilized optoelectronic oscillator. The cavity length is adjusted by controlling the phase shift of oscillation signal at relative low frequency via frequency division and frequency multiplication. In the proof-of-concept experiment, a 10 GHz signal has been successfully generated with the phase noise about -123 dBc/Hz at 10 kHz offset frequency assisted by the external triggering. The optoelectronic resonant cavity is tuned at 5 GHz via divide-by-2 prescaler and frequency doubler, and the frequency compensation range can be enlarged more than 3 times compared with conventional phase-locked-loop based stabilization method. Finally, the stability of the locked optoelectronic oscillator is improved from 4.1×10-7 to 1.1×10-10 at 1000s averaging time.\",\"PeriodicalId\":431579,\"journal\":{\"name\":\"2018 Asia Communications and Photonics Conference (ACP)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia Communications and Photonics Conference (ACP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACP.2018.8595884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia Communications and Photonics Conference (ACP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACP.2018.8595884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于变频对的稳定方案,并进行了实验验证,以提高稳定的光电振荡器的频漂补偿范围。通过分频和倍频控制振荡信号在相对低频处的相移来调节腔长。在概念验证实验中,在外部触发的辅助下,成功地在10khz偏置频率下产生了相位噪声约为-123 dBc/Hz的10ghz信号。光电谐振腔通过2倍频器和分频器调谐到5 GHz,频率补偿范围比传统的锁相环稳定方法扩大3倍以上。最后,在平均时间为1000s的情况下,将锁定的光电振荡器的稳定性从4.1×10-7提高到1.1×10-10。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency Compensation Range Amplification for the Stabilized Optoelectronic Oscillator
A novel stabilization scheme based on the frequency conversion pair has been proposed and experimentally demonstrated to improve the frequency-drift compensation range for the stabilized optoelectronic oscillator. The cavity length is adjusted by controlling the phase shift of oscillation signal at relative low frequency via frequency division and frequency multiplication. In the proof-of-concept experiment, a 10 GHz signal has been successfully generated with the phase noise about -123 dBc/Hz at 10 kHz offset frequency assisted by the external triggering. The optoelectronic resonant cavity is tuned at 5 GHz via divide-by-2 prescaler and frequency doubler, and the frequency compensation range can be enlarged more than 3 times compared with conventional phase-locked-loop based stabilization method. Finally, the stability of the locked optoelectronic oscillator is improved from 4.1×10-7 to 1.1×10-10 at 1000s averaging time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信