基于增强多目标遗传算法和动态规划的在线覆盖路径规划

Mina G. Sadek, Amr E. Mohamed, A. El-Garhy
{"title":"基于增强多目标遗传算法和动态规划的在线覆盖路径规划","authors":"Mina G. Sadek, Amr E. Mohamed, A. El-Garhy","doi":"10.1109/ICCES.2018.8639412","DOIUrl":null,"url":null,"abstract":"This paper introduces a sensor-based approach for finding an optimized solution for online coverage path planning problem. Compared to traditional approaches we can augment. Multi-objective optimization genetic algorithm (GA) with Dynamic Programming (DP) for finding a short path with complete coverage; while using on-board sensors data only. Simulation results prove the effectiveness of the proposed approach compared to current adapted approaches.","PeriodicalId":113848,"journal":{"name":"2018 13th International Conference on Computer Engineering and Systems (ICCES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Augmenting Multi-Objective Genetic Algorithm and Dynamic Programming for Online Coverage Path Planning\",\"authors\":\"Mina G. Sadek, Amr E. Mohamed, A. El-Garhy\",\"doi\":\"10.1109/ICCES.2018.8639412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a sensor-based approach for finding an optimized solution for online coverage path planning problem. Compared to traditional approaches we can augment. Multi-objective optimization genetic algorithm (GA) with Dynamic Programming (DP) for finding a short path with complete coverage; while using on-board sensors data only. Simulation results prove the effectiveness of the proposed approach compared to current adapted approaches.\",\"PeriodicalId\":113848,\"journal\":{\"name\":\"2018 13th International Conference on Computer Engineering and Systems (ICCES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 13th International Conference on Computer Engineering and Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2018.8639412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2018.8639412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了一种基于传感器的在线覆盖路径规划优化求解方法。与传统方法相比,我们可以增强。基于动态规划的全覆盖短路径多目标优化遗传算法(GA)仅使用车载传感器数据时。仿真结果证明了该方法与现有自适应方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Augmenting Multi-Objective Genetic Algorithm and Dynamic Programming for Online Coverage Path Planning
This paper introduces a sensor-based approach for finding an optimized solution for online coverage path planning problem. Compared to traditional approaches we can augment. Multi-objective optimization genetic algorithm (GA) with Dynamic Programming (DP) for finding a short path with complete coverage; while using on-board sensors data only. Simulation results prove the effectiveness of the proposed approach compared to current adapted approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信