结合特征脸、神经网络和自举的人脸检测器

G. Mota, R. Feitosa, S. Paciornik
{"title":"结合特征脸、神经网络和自举的人脸检测器","authors":"G. Mota, R. Feitosa, S. Paciornik","doi":"10.1109/SBRN.2000.889762","DOIUrl":null,"url":null,"abstract":"A critical issue in an automatic face recognition system is the determination of the region containing a face in an image with a cluttered background. The paper presents a method that optimizes the detection task through the use of eigenfaces, neural networks and a bootstrap algorithm. The main component of the proposed method is a nonlinear operator that detects the presence of a well-framed face image in 20x20 pixel windows. To detect faces larger than the window size the input image is successively reduced by a factor of 1.2 and the procedure is applied at each scale. To obtain a compact representation of the face images, the method applies principal component analysis directly to the pixel intensities of face images. Each image window analyzed by the detection algorithm is then projected upon the n principal components, the so-called eigenfaces. The dimensionality reduction thus achieved implies in a reconstruction error, the DFFS-distance from features space. The patterns representing an image window are formed by the n projections plus the DFFS.","PeriodicalId":448461,"journal":{"name":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face detector combining eigenfaces, neural network and bootstrap\",\"authors\":\"G. Mota, R. Feitosa, S. Paciornik\",\"doi\":\"10.1109/SBRN.2000.889762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A critical issue in an automatic face recognition system is the determination of the region containing a face in an image with a cluttered background. The paper presents a method that optimizes the detection task through the use of eigenfaces, neural networks and a bootstrap algorithm. The main component of the proposed method is a nonlinear operator that detects the presence of a well-framed face image in 20x20 pixel windows. To detect faces larger than the window size the input image is successively reduced by a factor of 1.2 and the procedure is applied at each scale. To obtain a compact representation of the face images, the method applies principal component analysis directly to the pixel intensities of face images. Each image window analyzed by the detection algorithm is then projected upon the n principal components, the so-called eigenfaces. The dimensionality reduction thus achieved implies in a reconstruction error, the DFFS-distance from features space. The patterns representing an image window are formed by the n projections plus the DFFS.\",\"PeriodicalId\":448461,\"journal\":{\"name\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBRN.2000.889762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2000.889762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人脸自动识别系统的一个关键问题是在背景杂乱的图像中确定包含人脸的区域。本文提出了一种利用特征面、神经网络和自举算法来优化检测任务的方法。该方法的主要组成部分是一个非线性算子,用于检测20x20像素窗口中是否存在框架良好的人脸图像。为了检测大于窗口大小的人脸,输入图像被依次减少了1.2倍,并在每个尺度上应用该过程。该方法将主成分分析直接应用于人脸图像的像素强度,以获得紧凑的人脸图像表示。通过检测算法分析的每个图像窗口然后投影到n个主成分上,即所谓的特征面。这样实现的降维意味着重建误差,即与特征空间的dfs距离。表示图像窗口的图案由n个投影加上DFFS组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face detector combining eigenfaces, neural network and bootstrap
A critical issue in an automatic face recognition system is the determination of the region containing a face in an image with a cluttered background. The paper presents a method that optimizes the detection task through the use of eigenfaces, neural networks and a bootstrap algorithm. The main component of the proposed method is a nonlinear operator that detects the presence of a well-framed face image in 20x20 pixel windows. To detect faces larger than the window size the input image is successively reduced by a factor of 1.2 and the procedure is applied at each scale. To obtain a compact representation of the face images, the method applies principal component analysis directly to the pixel intensities of face images. Each image window analyzed by the detection algorithm is then projected upon the n principal components, the so-called eigenfaces. The dimensionality reduction thus achieved implies in a reconstruction error, the DFFS-distance from features space. The patterns representing an image window are formed by the n projections plus the DFFS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信