利用BLSTM模型鉴定跨物种剪接连接

Aparajita Dutta, K. Singh, A. Anand
{"title":"利用BLSTM模型鉴定跨物种剪接连接","authors":"Aparajita Dutta, K. Singh, A. Anand","doi":"10.1145/3589437.3589438","DOIUrl":null,"url":null,"abstract":"Deep learning models like convolutional neural networks (CNN) and recurrent neural networks (RNN) have been used to identify splice sites from genome sequences. Most deep learning applications identify splice sites from a single species. Furthermore, the models generally identify and interpret only the canonical splice sites. However, a model capable of identifying both canonical and non-canonical splice sites from multiple species with comparable accuracy is more generalizable and robust. We analyze the performance of a BLSTM model for the first time across various species. We compare this RNN-based model with state-of-the-art splice site prediction models for identifying novel canonical and non-canonical splice sites in homo sapiens, mus musculus, and drosophila melanogaster.","PeriodicalId":119590,"journal":{"name":"Proceedings of the 2022 6th International Conference on Computational Biology and Bioinformatics","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Splice Junctions Across Species Using BLSTM Model\",\"authors\":\"Aparajita Dutta, K. Singh, A. Anand\",\"doi\":\"10.1145/3589437.3589438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models like convolutional neural networks (CNN) and recurrent neural networks (RNN) have been used to identify splice sites from genome sequences. Most deep learning applications identify splice sites from a single species. Furthermore, the models generally identify and interpret only the canonical splice sites. However, a model capable of identifying both canonical and non-canonical splice sites from multiple species with comparable accuracy is more generalizable and robust. We analyze the performance of a BLSTM model for the first time across various species. We compare this RNN-based model with state-of-the-art splice site prediction models for identifying novel canonical and non-canonical splice sites in homo sapiens, mus musculus, and drosophila melanogaster.\",\"PeriodicalId\":119590,\"journal\":{\"name\":\"Proceedings of the 2022 6th International Conference on Computational Biology and Bioinformatics\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 6th International Conference on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3589437.3589438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 6th International Conference on Computational Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589437.3589438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卷积神经网络(CNN)和循环神经网络(RNN)等深度学习模型已被用于识别基因组序列中的剪接位点。大多数深度学习应用程序从单个物种中识别剪接位点。此外,这些模型通常只能识别和解释典型的剪接位点。然而,一个能够以相当的精度识别多个物种的典型和非典型剪接位点的模型更具有通用性和鲁棒性。我们首次分析了跨物种的BLSTM模型的性能。我们将这种基于rnn的模型与最先进的剪接位点预测模型进行比较,以识别智人、小家鼠和黑食果蝇中新的规范和非规范剪接位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Splice Junctions Across Species Using BLSTM Model
Deep learning models like convolutional neural networks (CNN) and recurrent neural networks (RNN) have been used to identify splice sites from genome sequences. Most deep learning applications identify splice sites from a single species. Furthermore, the models generally identify and interpret only the canonical splice sites. However, a model capable of identifying both canonical and non-canonical splice sites from multiple species with comparable accuracy is more generalizable and robust. We analyze the performance of a BLSTM model for the first time across various species. We compare this RNN-based model with state-of-the-art splice site prediction models for identifying novel canonical and non-canonical splice sites in homo sapiens, mus musculus, and drosophila melanogaster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信