利用活动数据为电子科学用户提供智能数据监控

Anthony Simonet, K. Chard, G. Fedak, Ian T Foster
{"title":"利用活动数据为电子科学用户提供智能数据监控","authors":"Anthony Simonet, K. Chard, G. Fedak, Ian T Foster","doi":"10.1109/PDP.2015.76","DOIUrl":null,"url":null,"abstract":"Modern scientific experiments often involve multiple storage and computing platforms, software tools, and analysis scripts. The resulting heterogeneous environments make data management operations challenging, the significant number of events and the absence of data integration makes it difficult to track data provenance, manage sophisticated analysis processes, and recover from unexpected situations. Current approaches often require costly human intervention and are inherently error prone. The difficulties inherent in managing and manipulating such large and highly distributed datasets also limits automated sharing and collaboration. We study a real world e-Science application involving terabytes of data, using three different analysis and storage platforms, and a number of applications and analysis processes. We demonstrate that using a specialized data life cycle and programming model -- Active Data -- we can easily implement global progress monitoring, and sharing, recover from unexpected events, and automate a range of tasks.","PeriodicalId":285111,"journal":{"name":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using Active Data to Provide Smart Data Surveillance to E-Science Users\",\"authors\":\"Anthony Simonet, K. Chard, G. Fedak, Ian T Foster\",\"doi\":\"10.1109/PDP.2015.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern scientific experiments often involve multiple storage and computing platforms, software tools, and analysis scripts. The resulting heterogeneous environments make data management operations challenging, the significant number of events and the absence of data integration makes it difficult to track data provenance, manage sophisticated analysis processes, and recover from unexpected situations. Current approaches often require costly human intervention and are inherently error prone. The difficulties inherent in managing and manipulating such large and highly distributed datasets also limits automated sharing and collaboration. We study a real world e-Science application involving terabytes of data, using three different analysis and storage platforms, and a number of applications and analysis processes. We demonstrate that using a specialized data life cycle and programming model -- Active Data -- we can easily implement global progress monitoring, and sharing, recover from unexpected events, and automate a range of tasks.\",\"PeriodicalId\":285111,\"journal\":{\"name\":\"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2015.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2015.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

现代科学实验通常涉及多个存储和计算平台、软件工具和分析脚本。由此产生的异构环境使数据管理操作具有挑战性,大量事件和缺乏数据集成使得跟踪数据来源、管理复杂的分析流程以及从意外情况中恢复变得困难。目前的方法往往需要昂贵的人工干预,而且天生就容易出错。管理和操作如此庞大且高度分散的数据集所固有的困难也限制了自动共享和协作。我们研究了一个真实世界的电子科学应用程序,涉及tb级数据,使用三种不同的分析和存储平台,以及许多应用程序和分析过程。我们演示了使用专门的数据生命周期和编程模型——Active data——我们可以轻松地实现全局进度监控和共享,从意外事件中恢复,并自动执行一系列任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Active Data to Provide Smart Data Surveillance to E-Science Users
Modern scientific experiments often involve multiple storage and computing platforms, software tools, and analysis scripts. The resulting heterogeneous environments make data management operations challenging, the significant number of events and the absence of data integration makes it difficult to track data provenance, manage sophisticated analysis processes, and recover from unexpected situations. Current approaches often require costly human intervention and are inherently error prone. The difficulties inherent in managing and manipulating such large and highly distributed datasets also limits automated sharing and collaboration. We study a real world e-Science application involving terabytes of data, using three different analysis and storage platforms, and a number of applications and analysis processes. We demonstrate that using a specialized data life cycle and programming model -- Active Data -- we can easily implement global progress monitoring, and sharing, recover from unexpected events, and automate a range of tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信