{"title":"BinPointer:精确的,健全的,可扩展的二进制级指针分析","authors":"Sun Hyoung Kim, Dongrui Zeng, Cong Sun, Gang Tan","doi":"10.1145/3497776.3517776","DOIUrl":null,"url":null,"abstract":"Binary-level pointer analysis is critical to binary-level applications such as reverse engineering and binary debloating. In this paper, we propose BinPointer, a new binary-level interprocedural pointer analysis that relies on an offset-sensitive value-tracking analysis to achieve high precision. We also propose a soundness and precision evaluation methodology based on runtime memory accesses triggered by reference input data. Our experimental results demonstrate that BinPointer has higher precision over prior work, while maintaining acceptable scalability. The soundness of BinPointer is also validated through runtime data.","PeriodicalId":333281,"journal":{"name":"Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"BinPointer: towards precise, sound, and scalable binary-level pointer analysis\",\"authors\":\"Sun Hyoung Kim, Dongrui Zeng, Cong Sun, Gang Tan\",\"doi\":\"10.1145/3497776.3517776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Binary-level pointer analysis is critical to binary-level applications such as reverse engineering and binary debloating. In this paper, we propose BinPointer, a new binary-level interprocedural pointer analysis that relies on an offset-sensitive value-tracking analysis to achieve high precision. We also propose a soundness and precision evaluation methodology based on runtime memory accesses triggered by reference input data. Our experimental results demonstrate that BinPointer has higher precision over prior work, while maintaining acceptable scalability. The soundness of BinPointer is also validated through runtime data.\",\"PeriodicalId\":333281,\"journal\":{\"name\":\"Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3497776.3517776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM SIGPLAN International Conference on Compiler Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3497776.3517776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BinPointer: towards precise, sound, and scalable binary-level pointer analysis
Binary-level pointer analysis is critical to binary-level applications such as reverse engineering and binary debloating. In this paper, we propose BinPointer, a new binary-level interprocedural pointer analysis that relies on an offset-sensitive value-tracking analysis to achieve high precision. We also propose a soundness and precision evaluation methodology based on runtime memory accesses triggered by reference input data. Our experimental results demonstrate that BinPointer has higher precision over prior work, while maintaining acceptable scalability. The soundness of BinPointer is also validated through runtime data.