J. Christen, Cristina E. Davis, Min Li, A. Andreou
{"title":"CMOS相容生物mems元件阵列之设计、双面后处理与封装","authors":"J. Christen, Cristina E. Davis, Min Li, A. Andreou","doi":"10.1109/ISCAS.2002.1009928","DOIUrl":null,"url":null,"abstract":"Methods for design, double-sided post-processing and packaging of commercially fabricated CMOS chips for Bio-MEMS applications are presented. These techniques apply to a wide range of devices and allow for both electrical and optical stimulation and assessment of biological specimens. The techniques are straightforward and can be applied to dies fabricated through state of the art CMOS foundries. The resulting assemblies are designed to withstand environments commonly necessary for working with the biological materials such as biological temperatures, pressures, and moisture or autoclave. The proposed packaging is extremely versatile and can be modified to accommodate numerous additions to the system such as syringe inlets or mountable elements.","PeriodicalId":203750,"journal":{"name":"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)","volume":"149 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Design, double sided post-processing, and packaging of CMOS compatible bio-MEMS device arrays\",\"authors\":\"J. Christen, Cristina E. Davis, Min Li, A. Andreou\",\"doi\":\"10.1109/ISCAS.2002.1009928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods for design, double-sided post-processing and packaging of commercially fabricated CMOS chips for Bio-MEMS applications are presented. These techniques apply to a wide range of devices and allow for both electrical and optical stimulation and assessment of biological specimens. The techniques are straightforward and can be applied to dies fabricated through state of the art CMOS foundries. The resulting assemblies are designed to withstand environments commonly necessary for working with the biological materials such as biological temperatures, pressures, and moisture or autoclave. The proposed packaging is extremely versatile and can be modified to accommodate numerous additions to the system such as syringe inlets or mountable elements.\",\"PeriodicalId\":203750,\"journal\":{\"name\":\"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)\",\"volume\":\"149 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2002.1009928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2002.1009928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design, double sided post-processing, and packaging of CMOS compatible bio-MEMS device arrays
Methods for design, double-sided post-processing and packaging of commercially fabricated CMOS chips for Bio-MEMS applications are presented. These techniques apply to a wide range of devices and allow for both electrical and optical stimulation and assessment of biological specimens. The techniques are straightforward and can be applied to dies fabricated through state of the art CMOS foundries. The resulting assemblies are designed to withstand environments commonly necessary for working with the biological materials such as biological temperatures, pressures, and moisture or autoclave. The proposed packaging is extremely versatile and can be modified to accommodate numerous additions to the system such as syringe inlets or mountable elements.