许多

H. Ruan, And YANG WANG, Jian-Ci Xiao
{"title":"许多","authors":"H. Ruan, And YANG WANG, Jian-Ci Xiao","doi":"10.11129/9783955534257-015","DOIUrl":null,"url":null,"abstract":". In a previous work joint with Dai and Luo, we show that a connected generalized Sierpi´nski carpet (or shortly a GSC) has cut points if and only if the associated n -th Hata graph has a long tail for all n ≥ 2. In this paper, we extend the above result by showing that it suffices to check a finite number of those graphs to reach a conclusion. This criterion provides a truly “algorithmic” solution to the cut point problem of connected GSCs. We also construct for each m ≥ 1 a connected GSC with exactly m cut points and demonstrate that when m ≥ 2, such a GSC must be of the so-called fragile type.","PeriodicalId":185294,"journal":{"name":"Robotic Building","volume":"312 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Many\",\"authors\":\"H. Ruan, And YANG WANG, Jian-Ci Xiao\",\"doi\":\"10.11129/9783955534257-015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In a previous work joint with Dai and Luo, we show that a connected generalized Sierpi´nski carpet (or shortly a GSC) has cut points if and only if the associated n -th Hata graph has a long tail for all n ≥ 2. In this paper, we extend the above result by showing that it suffices to check a finite number of those graphs to reach a conclusion. This criterion provides a truly “algorithmic” solution to the cut point problem of connected GSCs. We also construct for each m ≥ 1 a connected GSC with exactly m cut points and demonstrate that when m ≥ 2, such a GSC must be of the so-called fragile type.\",\"PeriodicalId\":185294,\"journal\":{\"name\":\"Robotic Building\",\"volume\":\"312 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotic Building\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11129/9783955534257-015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotic Building","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11129/9783955534257-015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

。在之前与Dai和Luo联合的工作中,我们证明了一个连通的广义Sierpi´nski地毯(或简称GSC)具有切点当且仅当相关的第n - Hata图对所有n≥2具有长尾。在本文中,我们扩展了上述结果,证明了检验有限个图就足以得出结论。该准则提供了一个真正的“算法”解决方案,连接的GSCs的切割点问题。对于每m≥1,我们构造了一个有m个切点的连通GSC,并证明了当m≥2时,这个GSC一定是所谓的脆弱型GSC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Many
. In a previous work joint with Dai and Luo, we show that a connected generalized Sierpi´nski carpet (or shortly a GSC) has cut points if and only if the associated n -th Hata graph has a long tail for all n ≥ 2. In this paper, we extend the above result by showing that it suffices to check a finite number of those graphs to reach a conclusion. This criterion provides a truly “algorithmic” solution to the cut point problem of connected GSCs. We also construct for each m ≥ 1 a connected GSC with exactly m cut points and demonstrate that when m ≥ 2, such a GSC must be of the so-called fragile type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信