常维码的Graham-Sloane型构造

Shutao Xia
{"title":"常维码的Graham-Sloane型构造","authors":"Shutao Xia","doi":"10.1109/NETCOD.2008.4476190","DOIUrl":null,"url":null,"abstract":"Very recently, an operator channel was defined by Koetter and Kschischang when they studied random network coding. They also introduced constant dimension codes and demonstrated that these codes can be employed to correct errors and/or erasures over the operator channel. In this paper, a Graham-Sloane type construction of constant dimension codes is presented. It is shown that the construction for the case of minimum dimension distance 4 exceeds the Gilbert type lower bound for constant dimension codes.","PeriodicalId":186056,"journal":{"name":"2008 Fourth Workshop on Network Coding, Theory and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Graham-Sloane Type Construction of Constant Dimension Codes\",\"authors\":\"Shutao Xia\",\"doi\":\"10.1109/NETCOD.2008.4476190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Very recently, an operator channel was defined by Koetter and Kschischang when they studied random network coding. They also introduced constant dimension codes and demonstrated that these codes can be employed to correct errors and/or erasures over the operator channel. In this paper, a Graham-Sloane type construction of constant dimension codes is presented. It is shown that the construction for the case of minimum dimension distance 4 exceeds the Gilbert type lower bound for constant dimension codes.\",\"PeriodicalId\":186056,\"journal\":{\"name\":\"2008 Fourth Workshop on Network Coding, Theory and Applications\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fourth Workshop on Network Coding, Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NETCOD.2008.4476190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fourth Workshop on Network Coding, Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NETCOD.2008.4476190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近,Koetter和Kschischang在研究随机网络编码时定义了一个运营商信道。他们还介绍了恒定尺寸代码,并证明了这些代码可以用于纠正操作员信道上的错误和/或擦除。本文给出了常维码的Graham-Sloane型构造。结果表明,最小维距为4时的结构超过了常维码的吉尔伯特型下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graham-Sloane Type Construction of Constant Dimension Codes
Very recently, an operator channel was defined by Koetter and Kschischang when they studied random network coding. They also introduced constant dimension codes and demonstrated that these codes can be employed to correct errors and/or erasures over the operator channel. In this paper, a Graham-Sloane type construction of constant dimension codes is presented. It is shown that the construction for the case of minimum dimension distance 4 exceeds the Gilbert type lower bound for constant dimension codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信