改进卷积神经网络的盲蝽检测

Wendou Nie, Yucheng Zhang, Jinfen Ren, Ruiyang Li
{"title":"改进卷积神经网络的盲蝽检测","authors":"Wendou Nie, Yucheng Zhang, Jinfen Ren, Ruiyang Li","doi":"10.1109/ICVRIS51417.2020.00226","DOIUrl":null,"url":null,"abstract":"To improve the detection accuracy of Lugus Lucorum in natural environment, a Lugus Lucorum detection method is proposed based on improved convolution neural network (CNN). First, based on YOLO-v3, a new training data set labeling strategy is designed to make the target have a higher effective pixel occupation rate in Ground Truth. Two DenseBlock structures are integrated to effectively alleviate gradient disappearance, reduce the number of parameters, and save computational power. Feature reuse can also play an anti-overfitting role. The proposed method is validated on the dataset of Lugus Lucorum images. The experiment results show that the method can effectively detect the Lugus Lucorum.","PeriodicalId":162549,"journal":{"name":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lugus Lucorum Detection by Improved Convolutional Neural Network\",\"authors\":\"Wendou Nie, Yucheng Zhang, Jinfen Ren, Ruiyang Li\",\"doi\":\"10.1109/ICVRIS51417.2020.00226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the detection accuracy of Lugus Lucorum in natural environment, a Lugus Lucorum detection method is proposed based on improved convolution neural network (CNN). First, based on YOLO-v3, a new training data set labeling strategy is designed to make the target have a higher effective pixel occupation rate in Ground Truth. Two DenseBlock structures are integrated to effectively alleviate gradient disappearance, reduce the number of parameters, and save computational power. Feature reuse can also play an anti-overfitting role. The proposed method is validated on the dataset of Lugus Lucorum images. The experiment results show that the method can effectively detect the Lugus Lucorum.\",\"PeriodicalId\":162549,\"journal\":{\"name\":\"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVRIS51417.2020.00226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Virtual Reality and Intelligent Systems (ICVRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVRIS51417.2020.00226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高自然环境中盲蝽的检测精度,提出了一种基于改进卷积神经网络(CNN)的盲蝽检测方法。首先,基于YOLO-v3,设计了一种新的训练数据集标注策略,使目标在Ground Truth中具有更高的有效像素占用率。两种DenseBlock结构集成,有效缓解梯度消失,减少参数数量,节省计算能力。特征重用还可以起到防止过拟合的作用。在lucus Lucorum图像数据集上对该方法进行了验证。实验结果表明,该方法能有效地检测出盲蝽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lugus Lucorum Detection by Improved Convolutional Neural Network
To improve the detection accuracy of Lugus Lucorum in natural environment, a Lugus Lucorum detection method is proposed based on improved convolution neural network (CNN). First, based on YOLO-v3, a new training data set labeling strategy is designed to make the target have a higher effective pixel occupation rate in Ground Truth. Two DenseBlock structures are integrated to effectively alleviate gradient disappearance, reduce the number of parameters, and save computational power. Feature reuse can also play an anti-overfitting role. The proposed method is validated on the dataset of Lugus Lucorum images. The experiment results show that the method can effectively detect the Lugus Lucorum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信