利用监督机器学习技术鉴定疟疾细胞使用血液涂片

Ilsa Rameen, Ayesha Shahadat, Mehwish Mehreen, Saqlain Razzaq, Muhammad Adeel Asghar, Muhammad Jamil Khan
{"title":"利用监督机器学习技术鉴定疟疾细胞使用血液涂片","authors":"Ilsa Rameen, Ayesha Shahadat, Mehwish Mehreen, Saqlain Razzaq, Muhammad Adeel Asghar, Muhammad Jamil Khan","doi":"10.1109/ICoDT252288.2021.9441534","DOIUrl":null,"url":null,"abstract":"Plasmodium parasite is identified as amenable for spreading a disease named Malaria. Under the stodgy method, the blood splotch is first smeared on the slide, scrutinized under the microscope, and parasites (which can cause malaria) in blood cells are detected. For beneficial parasite detection, image processing proves to be very much dominant. The reason for this is accuracy in the results. This research presents Malaria detection in blood smear images using supervised learning methods. This proposed method starts with the preprocessing in which images are resized and converted into grayscale. The thresholding technique is implemented to identify blobs for segmentation. For feature extraction, GoogLeNet is maneuvered, and the results of the classification show that this method has an accuracy of 95.8% for detecting malaria in blood smear images.","PeriodicalId":207832,"journal":{"name":"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)","volume":"301 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Leveraging Supervised Machine Learning Techniques for Identification of Malaria Cells using Blood Smears\",\"authors\":\"Ilsa Rameen, Ayesha Shahadat, Mehwish Mehreen, Saqlain Razzaq, Muhammad Adeel Asghar, Muhammad Jamil Khan\",\"doi\":\"10.1109/ICoDT252288.2021.9441534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasmodium parasite is identified as amenable for spreading a disease named Malaria. Under the stodgy method, the blood splotch is first smeared on the slide, scrutinized under the microscope, and parasites (which can cause malaria) in blood cells are detected. For beneficial parasite detection, image processing proves to be very much dominant. The reason for this is accuracy in the results. This research presents Malaria detection in blood smear images using supervised learning methods. This proposed method starts with the preprocessing in which images are resized and converted into grayscale. The thresholding technique is implemented to identify blobs for segmentation. For feature extraction, GoogLeNet is maneuvered, and the results of the classification show that this method has an accuracy of 95.8% for detecting malaria in blood smear images.\",\"PeriodicalId\":207832,\"journal\":{\"name\":\"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)\",\"volume\":\"301 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICoDT252288.2021.9441534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoDT252288.2021.9441534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

寄生虫疟原虫被认为可以传播一种叫做疟疾的疾病。在传统的方法下,首先将血斑涂在载玻片上,在显微镜下仔细观察,并检测血细胞中的寄生虫(可引起疟疾)。对于有益的寄生虫检测,图像处理被证明是非常占优势的。这样做的原因是结果的准确性。本研究提出了使用监督学习方法检测血液涂片图像中的疟疾。该方法首先对图像进行预处理,调整图像大小并将其转换为灰度。实现了阈值分割技术来识别blob进行分割。在特征提取方面,对GoogLeNet进行了机动,分类结果表明,该方法对血液涂片图像中的疟疾检测准确率达到95.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Supervised Machine Learning Techniques for Identification of Malaria Cells using Blood Smears
Plasmodium parasite is identified as amenable for spreading a disease named Malaria. Under the stodgy method, the blood splotch is first smeared on the slide, scrutinized under the microscope, and parasites (which can cause malaria) in blood cells are detected. For beneficial parasite detection, image processing proves to be very much dominant. The reason for this is accuracy in the results. This research presents Malaria detection in blood smear images using supervised learning methods. This proposed method starts with the preprocessing in which images are resized and converted into grayscale. The thresholding technique is implemented to identify blobs for segmentation. For feature extraction, GoogLeNet is maneuvered, and the results of the classification show that this method has an accuracy of 95.8% for detecting malaria in blood smear images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信