{"title":"基于s变换和人工神经网络的电能质量扰动分类","authors":"S. Karasu, Z. Saraç","doi":"10.1109/SIU.2017.7960216","DOIUrl":null,"url":null,"abstract":"In this study, classification of 11 different Power Quality (PQ) disturbances with Artificial Neural Networks (ANN) has been done by using the attributes obtained with S-Transform. It was aimed to achieve accurate and high classification performance in noisy environment by using the least number of attributes representing PQ disturbances. The most suitable ones from the attributes were selected by Sequential Forward Selection (SFS) method. The performance of models with different hidden layer neuron numbers tested at different noise levels (40 dB, 30 dB and 20 dB) by using the selected attributes. In this study, it was found that for the most appropriate number of attributes and optimal model parameters, performance in noisy environment (20 dB) and overall performance were 99.0%.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Classification of power quality disturbances with S-transform and artificial neural networks method\",\"authors\":\"S. Karasu, Z. Saraç\",\"doi\":\"10.1109/SIU.2017.7960216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, classification of 11 different Power Quality (PQ) disturbances with Artificial Neural Networks (ANN) has been done by using the attributes obtained with S-Transform. It was aimed to achieve accurate and high classification performance in noisy environment by using the least number of attributes representing PQ disturbances. The most suitable ones from the attributes were selected by Sequential Forward Selection (SFS) method. The performance of models with different hidden layer neuron numbers tested at different noise levels (40 dB, 30 dB and 20 dB) by using the selected attributes. In this study, it was found that for the most appropriate number of attributes and optimal model parameters, performance in noisy environment (20 dB) and overall performance were 99.0%.\",\"PeriodicalId\":217576,\"journal\":{\"name\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2017.7960216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of power quality disturbances with S-transform and artificial neural networks method
In this study, classification of 11 different Power Quality (PQ) disturbances with Artificial Neural Networks (ANN) has been done by using the attributes obtained with S-Transform. It was aimed to achieve accurate and high classification performance in noisy environment by using the least number of attributes representing PQ disturbances. The most suitable ones from the attributes were selected by Sequential Forward Selection (SFS) method. The performance of models with different hidden layer neuron numbers tested at different noise levels (40 dB, 30 dB and 20 dB) by using the selected attributes. In this study, it was found that for the most appropriate number of attributes and optimal model parameters, performance in noisy environment (20 dB) and overall performance were 99.0%.