阿拉伯文字识别中改进的字母加权特征选择

Choon-Ching Ng, A. Selamat
{"title":"阿拉伯文字识别中改进的字母加权特征选择","authors":"Choon-Ching Ng, A. Selamat","doi":"10.1109/ACIIDS.2009.33","DOIUrl":null,"url":null,"abstract":"Language identification is the process identifying predefined language in a document automatically; we focused on the web documents in this paper. Initially, we have applied the letter frequency as features combine with neural networks in Arabic script language identification. However, reliability of selected letters of the features is a major issue to be overcome. Therefore, we propose an improved letter weighting feature selection in order to enhance the effectiveness of language identification. It is based on the concept letter frequency document frequency. From the experiments, we have found that the improved letter weighting feature selection achieve the highest accuracy 99.75% on Arabic script language identification.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Improved Letter Weighting Feature Selection on Arabic Script Language Identification\",\"authors\":\"Choon-Ching Ng, A. Selamat\",\"doi\":\"10.1109/ACIIDS.2009.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Language identification is the process identifying predefined language in a document automatically; we focused on the web documents in this paper. Initially, we have applied the letter frequency as features combine with neural networks in Arabic script language identification. However, reliability of selected letters of the features is a major issue to be overcome. Therefore, we propose an improved letter weighting feature selection in order to enhance the effectiveness of language identification. It is based on the concept letter frequency document frequency. From the experiments, we have found that the improved letter weighting feature selection achieve the highest accuracy 99.75% on Arabic script language identification.\",\"PeriodicalId\":275776,\"journal\":{\"name\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Asian Conference on Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACIIDS.2009.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

语言识别是自动识别文档中预定义语言的过程;本文的研究重点是网络文档。首先,我们将字母频率作为特征与神经网络相结合,应用于阿拉伯文字语言识别。然而,特征选择字母的可靠性是一个需要克服的主要问题。因此,我们提出了一种改进的字母加权特征选择,以提高语言识别的有效性。它是基于字母频率文件频率的概念。实验结果表明,改进后的字母权重特征选择对阿拉伯文语言识别的准确率达到了99.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved Letter Weighting Feature Selection on Arabic Script Language Identification
Language identification is the process identifying predefined language in a document automatically; we focused on the web documents in this paper. Initially, we have applied the letter frequency as features combine with neural networks in Arabic script language identification. However, reliability of selected letters of the features is a major issue to be overcome. Therefore, we propose an improved letter weighting feature selection in order to enhance the effectiveness of language identification. It is based on the concept letter frequency document frequency. From the experiments, we have found that the improved letter weighting feature selection achieve the highest accuracy 99.75% on Arabic script language identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信