基于ccd的实时神经网络系统模式识别应用

A. Chiang
{"title":"基于ccd的实时神经网络系统模式识别应用","authors":"A. Chiang","doi":"10.1109/NNSP.1992.253651","DOIUrl":null,"url":null,"abstract":"A generic NNC (neural network classifier) capable of providing 1.9 billion programmable connections per second is described. Applications for these generic processors include image and speech recognition as well as sonar signal identification. To demonstrate the modularity and flexibility of the CCD (charge coupled device) NNCs, two generic multilayer system-level boards capable of both feedforward and feedback nets are presented. The boards demonstrate multiple LL NN chips in an adaptable, reconfigurable, expandable multipurpose system design. Although only two examples are demonstrated, the extension to larger and more complicated networks using multiple NN devices as building blocks is straightforward.<<ETX>>","PeriodicalId":438250,"journal":{"name":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","volume":"364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real time CCD-based neural network system for pattern recognition applications\",\"authors\":\"A. Chiang\",\"doi\":\"10.1109/NNSP.1992.253651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A generic NNC (neural network classifier) capable of providing 1.9 billion programmable connections per second is described. Applications for these generic processors include image and speech recognition as well as sonar signal identification. To demonstrate the modularity and flexibility of the CCD (charge coupled device) NNCs, two generic multilayer system-level boards capable of both feedforward and feedback nets are presented. The boards demonstrate multiple LL NN chips in an adaptable, reconfigurable, expandable multipurpose system design. Although only two examples are demonstrated, the extension to larger and more complicated networks using multiple NN devices as building blocks is straightforward.<<ETX>>\",\"PeriodicalId\":438250,\"journal\":{\"name\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"volume\":\"364 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1992.253651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing II Proceedings of the 1992 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1992.253651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

描述了一种能够提供每秒19亿个可编程连接的通用NNC(神经网络分类器)。这些通用处理器的应用包括图像和语音识别以及声纳信号识别。为了演示CCD(电荷耦合器件)nnc的模块化和灵活性,提出了两种通用的多层系统级电路板,既能前馈网络,也能反馈网络。这些电路板展示了一个可适应、可重构、可扩展的多用途系统设计中的多个LL神经网络芯片。虽然只展示了两个例子,但使用多个神经网络设备作为构建块扩展到更大、更复杂的网络是直截了当的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real time CCD-based neural network system for pattern recognition applications
A generic NNC (neural network classifier) capable of providing 1.9 billion programmable connections per second is described. Applications for these generic processors include image and speech recognition as well as sonar signal identification. To demonstrate the modularity and flexibility of the CCD (charge coupled device) NNCs, two generic multilayer system-level boards capable of both feedforward and feedback nets are presented. The boards demonstrate multiple LL NN chips in an adaptable, reconfigurable, expandable multipurpose system design. Although only two examples are demonstrated, the extension to larger and more complicated networks using multiple NN devices as building blocks is straightforward.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信