多通道脑电图癫痫峰检测系统特征选择新方法

N. Dao, Thanh Trung LE, V. Nguyen, N. Linh-Trung, Ha Vu Le
{"title":"多通道脑电图癫痫峰检测系统特征选择新方法","authors":"N. Dao, Thanh Trung LE, V. Nguyen, N. Linh-Trung, Ha Vu Le","doi":"10.25073/2588-1086/vnucsce.230","DOIUrl":null,"url":null,"abstract":"Epilepsy is one of the most common and severe brain disorders. Electroencephalogram (EEG) is widely used in epilepsy diagnosis and treatment, with it the epileptic spikes can be observed. Tensor decomposition-based feature extraction has been proposed to facilitate automatic detection of EEG epileptic spikes. However, tensor decomposition may still result in a large number of features which are considered negligible in determining expected output performance. We proposed a new feature selection method that combines the Fisher score and p-value feature selection methods to rank the features by using the longest common sequences (LCS) to separate epileptic and non-epileptic spikes. The proposed method significantly outperformed several state-of-the-art feature selection methods.","PeriodicalId":416488,"journal":{"name":"VNU Journal of Science: Computer Science and Communication Engineering","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"New Feature Selection Method for Multi-channel EEG Epileptic Spike Detection System\",\"authors\":\"N. Dao, Thanh Trung LE, V. Nguyen, N. Linh-Trung, Ha Vu Le\",\"doi\":\"10.25073/2588-1086/vnucsce.230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is one of the most common and severe brain disorders. Electroencephalogram (EEG) is widely used in epilepsy diagnosis and treatment, with it the epileptic spikes can be observed. Tensor decomposition-based feature extraction has been proposed to facilitate automatic detection of EEG epileptic spikes. However, tensor decomposition may still result in a large number of features which are considered negligible in determining expected output performance. We proposed a new feature selection method that combines the Fisher score and p-value feature selection methods to rank the features by using the longest common sequences (LCS) to separate epileptic and non-epileptic spikes. The proposed method significantly outperformed several state-of-the-art feature selection methods.\",\"PeriodicalId\":416488,\"journal\":{\"name\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VNU Journal of Science: Computer Science and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25073/2588-1086/vnucsce.230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VNU Journal of Science: Computer Science and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25073/2588-1086/vnucsce.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

癫痫是最常见和最严重的脑部疾病之一。脑电图(EEG)在癫痫的诊断和治疗中有着广泛的应用,它可以观察到癫痫峰。提出了一种基于张量分解的特征提取方法,用于脑电图癫痫峰的自动检测。然而,张量分解仍然可能产生大量的特征,这些特征在确定预期的输出性能时被认为是可以忽略不计的。我们提出了一种新的特征选择方法,结合Fisher评分和p值特征选择方法,利用最长公共序列(LCS)分离癫痫和非癫痫性峰值,对特征进行排序。该方法明显优于几种最先进的特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Feature Selection Method for Multi-channel EEG Epileptic Spike Detection System
Epilepsy is one of the most common and severe brain disorders. Electroencephalogram (EEG) is widely used in epilepsy diagnosis and treatment, with it the epileptic spikes can be observed. Tensor decomposition-based feature extraction has been proposed to facilitate automatic detection of EEG epileptic spikes. However, tensor decomposition may still result in a large number of features which are considered negligible in determining expected output performance. We proposed a new feature selection method that combines the Fisher score and p-value feature selection methods to rank the features by using the longest common sequences (LCS) to separate epileptic and non-epileptic spikes. The proposed method significantly outperformed several state-of-the-art feature selection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信