利用HOS探测雷达目标

R. D. Pierce
{"title":"利用HOS探测雷达目标","authors":"R. D. Pierce","doi":"10.1109/HOST.1993.264545","DOIUrl":null,"url":null,"abstract":"The application of higher-order statistics (HOS) to the detection of radar targets takes advantage of the HOS characteristic that allows the test statistics to be unbiased by Gaussian noise. To make use of this characteristic using data from a coherent radar, the samples from the radar's synchronous detector are coherently averaged in a formulation of the triple correlation. The HOS method is compared to the classical pulse Doppler method and the quadratic detector. For the examples given, the HOS method shows a one to two dB improvement over classical methods.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detection of radar targets using HOS\",\"authors\":\"R. D. Pierce\",\"doi\":\"10.1109/HOST.1993.264545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of higher-order statistics (HOS) to the detection of radar targets takes advantage of the HOS characteristic that allows the test statistics to be unbiased by Gaussian noise. To make use of this characteristic using data from a coherent radar, the samples from the radar's synchronous detector are coherently averaged in a formulation of the triple correlation. The HOS method is compared to the classical pulse Doppler method and the quadratic detector. For the examples given, the HOS method shows a one to two dB improvement over classical methods.<<ETX>>\",\"PeriodicalId\":439030,\"journal\":{\"name\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1993.264545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高阶统计量(HOS)在雷达目标检测中的应用,利用了高阶统计量不受高斯噪声影响的特性。为了利用相干雷达数据的这一特性,雷达同步探测器的样本在三重相关公式中被相干平均。将HOS方法与经典脉冲多普勒方法和二次型检波器进行了比较。对于所给出的例子,HOS方法比经典方法提高了一到两个dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection of radar targets using HOS
The application of higher-order statistics (HOS) to the detection of radar targets takes advantage of the HOS characteristic that allows the test statistics to be unbiased by Gaussian noise. To make use of this characteristic using data from a coherent radar, the samples from the radar's synchronous detector are coherently averaged in a formulation of the triple correlation. The HOS method is compared to the classical pulse Doppler method and the quadratic detector. For the examples given, the HOS method shows a one to two dB improvement over classical methods.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信