DDGacc:通过专门的硬件支持增强动态的基于ddg的二进制优化

Demos Pavlou, E. Gibert, Fernando Latorre, Antonio González
{"title":"DDGacc:通过专门的硬件支持增强动态的基于ddg的二进制优化","authors":"Demos Pavlou, E. Gibert, Fernando Latorre, Antonio González","doi":"10.1145/2151024.2151046","DOIUrl":null,"url":null,"abstract":"Dynamic Binary Translators (DBT) and Dynamic Binary Optimization (DBO) by software are used widely for several reasons including performance, design simplification and virtualization. However, the software layer in such systems introduces non-negligible overheads which affect performance and user experience. Hence, reducing DBT/DBO overheads is of paramount importance. In addition, reduced overheads have interesting collateral effects in the rest of the software layer, such as allowing optimizations to be applied earlier. A cost-effective solution to this problem is to provide hardware support to speed up the primitives of the software layer, paying special attention to automate DBT/DBO mechanisms and leave the heuristics to the software, which is more flexible. In this work, we have characterized the overheads of a DBO system using DynamoRIO implementing several basic optimizations. We have seen that the computation of the Data Dependence Graph (DDG) accounts for 5%-10% of the execution time. For this reason, we propose to add hardware support for this task in the form of a new functional unit, called DDGacc, which is integrated in a conventional pipeline processor and is operated through new ISA instructions. Our evaluation shows that DDGacc reduces the cost of computing the DDG by 32x, which reduces overall execution time by 5%-10% on average and up to 18% for applications where the DBO optimizes large code footprints.","PeriodicalId":202844,"journal":{"name":"International Conference on Virtual Execution Environments","volume":"307 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"DDGacc: boosting dynamic DDG-based binary optimizations through specialized hardware support\",\"authors\":\"Demos Pavlou, E. Gibert, Fernando Latorre, Antonio González\",\"doi\":\"10.1145/2151024.2151046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Binary Translators (DBT) and Dynamic Binary Optimization (DBO) by software are used widely for several reasons including performance, design simplification and virtualization. However, the software layer in such systems introduces non-negligible overheads which affect performance and user experience. Hence, reducing DBT/DBO overheads is of paramount importance. In addition, reduced overheads have interesting collateral effects in the rest of the software layer, such as allowing optimizations to be applied earlier. A cost-effective solution to this problem is to provide hardware support to speed up the primitives of the software layer, paying special attention to automate DBT/DBO mechanisms and leave the heuristics to the software, which is more flexible. In this work, we have characterized the overheads of a DBO system using DynamoRIO implementing several basic optimizations. We have seen that the computation of the Data Dependence Graph (DDG) accounts for 5%-10% of the execution time. For this reason, we propose to add hardware support for this task in the form of a new functional unit, called DDGacc, which is integrated in a conventional pipeline processor and is operated through new ISA instructions. Our evaluation shows that DDGacc reduces the cost of computing the DDG by 32x, which reduces overall execution time by 5%-10% on average and up to 18% for applications where the DBO optimizes large code footprints.\",\"PeriodicalId\":202844,\"journal\":{\"name\":\"International Conference on Virtual Execution Environments\",\"volume\":\"307 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Virtual Execution Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2151024.2151046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2151024.2151046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

基于软件的动态二进制翻译(DBT)和动态二进制优化(DBO)由于性能、设计简化和虚拟化等原因得到了广泛的应用。然而,这样的系统中的软件层引入了不可忽略的开销,这会影响性能和用户体验。因此,减少DBT/DBO开销至关重要。此外,减少的开销对软件层的其余部分有有趣的附带影响,例如允许更早地应用优化。这个问题的一个经济有效的解决方案是提供硬件支持来加速软件层的原语,特别注意DBT/DBO机制的自动化,并将启发式留给软件,这更灵活。在这项工作中,我们描述了使用DynamoRIO实现几个基本优化的DBO系统的开销。我们已经看到,数据依赖图(DDG)的计算占执行时间的5%-10%。因此,我们建议为这项任务增加硬件支持,以一种新的功能单元的形式,称为DDGacc,它集成在传统的流水线处理器中,并通过新的ISA指令进行操作。我们的评估表明,DDGacc将计算DDG的成本降低了32倍,这平均将总执行时间减少了5%-10%,对于DBO优化了大量代码占用的应用程序,这一比例最高可降低18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DDGacc: boosting dynamic DDG-based binary optimizations through specialized hardware support
Dynamic Binary Translators (DBT) and Dynamic Binary Optimization (DBO) by software are used widely for several reasons including performance, design simplification and virtualization. However, the software layer in such systems introduces non-negligible overheads which affect performance and user experience. Hence, reducing DBT/DBO overheads is of paramount importance. In addition, reduced overheads have interesting collateral effects in the rest of the software layer, such as allowing optimizations to be applied earlier. A cost-effective solution to this problem is to provide hardware support to speed up the primitives of the software layer, paying special attention to automate DBT/DBO mechanisms and leave the heuristics to the software, which is more flexible. In this work, we have characterized the overheads of a DBO system using DynamoRIO implementing several basic optimizations. We have seen that the computation of the Data Dependence Graph (DDG) accounts for 5%-10% of the execution time. For this reason, we propose to add hardware support for this task in the form of a new functional unit, called DDGacc, which is integrated in a conventional pipeline processor and is operated through new ISA instructions. Our evaluation shows that DDGacc reduces the cost of computing the DDG by 32x, which reduces overall execution time by 5%-10% on average and up to 18% for applications where the DBO optimizes large code footprints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信