平面微波电路中的径向波激励与辐射条件

R. Jansen
{"title":"平面微波电路中的径向波激励与辐射条件","authors":"R. Jansen","doi":"10.1109/EUMA.1979.332657","DOIUrl":null,"url":null,"abstract":"In a detailed rigorous analysis it is shown how the radiation condition can be incorporated into the hybrid mode formulation of planar circuit boundary value problems. The analysis presented is based on the fact that the spectral domain Green's function of covered planar structures can be expressed in terms of radial wave eigenfunctions. It considers lossy substrates for the limiting case of vanishing losses and throws some light on the mechanism of the excitation of radial waves in planar circuits. Numerical results are presented for the microstrip case.","PeriodicalId":128931,"journal":{"name":"1979 9th European Microwave Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radial Wave Excitation and the Radiation Condition in Planar Microwave Circuits\",\"authors\":\"R. Jansen\",\"doi\":\"10.1109/EUMA.1979.332657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a detailed rigorous analysis it is shown how the radiation condition can be incorporated into the hybrid mode formulation of planar circuit boundary value problems. The analysis presented is based on the fact that the spectral domain Green's function of covered planar structures can be expressed in terms of radial wave eigenfunctions. It considers lossy substrates for the limiting case of vanishing losses and throws some light on the mechanism of the excitation of radial waves in planar circuits. Numerical results are presented for the microstrip case.\",\"PeriodicalId\":128931,\"journal\":{\"name\":\"1979 9th European Microwave Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1979-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1979 9th European Microwave Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUMA.1979.332657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1979 9th European Microwave Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUMA.1979.332657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在详细严密的分析中,显示了如何将辐射条件纳入平面电路边值问题的混合模式公式中。本文的分析是基于覆盖平面结构的谱域格林函数可以用径向波特征函数表示的事实。在损耗消失的极限情况下,考虑了有耗衬底,并对平面电路中径向波的激发机理有了一定的了解。给出了微带情况下的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radial Wave Excitation and the Radiation Condition in Planar Microwave Circuits
In a detailed rigorous analysis it is shown how the radiation condition can be incorporated into the hybrid mode formulation of planar circuit boundary value problems. The analysis presented is based on the fact that the spectral domain Green's function of covered planar structures can be expressed in terms of radial wave eigenfunctions. It considers lossy substrates for the limiting case of vanishing losses and throws some light on the mechanism of the excitation of radial waves in planar circuits. Numerical results are presented for the microstrip case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信