作为分段平稳过程的时间序列模型

N. Ivanov, A. Prasolov
{"title":"作为分段平稳过程的时间序列模型","authors":"N. Ivanov, A. Prasolov","doi":"10.1145/3274856.3274888","DOIUrl":null,"url":null,"abstract":"This work is devoted to determining the space-time area that contains a time-series trend to address mathematical expectations. A time series trajectory represents the realization of a stochastic process in discrete time; thus, its approximation is random and cannot be considered a trend valuation. We offer to interpret an arbitrary time series as a trajectory of a piecewise-stationary process. This allows for us to describe an algorithm that constructs the area where the trend is located.","PeriodicalId":373840,"journal":{"name":"Proceedings of the 3rd International Conference on Applications in Information Technology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Model of Time Series as a Piecewise-Stationary Process\",\"authors\":\"N. Ivanov, A. Prasolov\",\"doi\":\"10.1145/3274856.3274888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to determining the space-time area that contains a time-series trend to address mathematical expectations. A time series trajectory represents the realization of a stochastic process in discrete time; thus, its approximation is random and cannot be considered a trend valuation. We offer to interpret an arbitrary time series as a trajectory of a piecewise-stationary process. This allows for us to describe an algorithm that constructs the area where the trend is located.\",\"PeriodicalId\":373840,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Applications in Information Technology\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Applications in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3274856.3274888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Applications in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274856.3274888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作致力于确定包含时间序列趋势的时空区域,以解决数学期望。时间序列轨迹表示一个随机过程在离散时间内的实现;因此,它的近似是随机的,不能被认为是趋势估值。我们提出将任意时间序列解释为分段平稳过程的轨迹。这允许我们描述一种算法来构建趋势所在的区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Model of Time Series as a Piecewise-Stationary Process
This work is devoted to determining the space-time area that contains a time-series trend to address mathematical expectations. A time series trajectory represents the realization of a stochastic process in discrete time; thus, its approximation is random and cannot be considered a trend valuation. We offer to interpret an arbitrary time series as a trajectory of a piecewise-stationary process. This allows for us to describe an algorithm that constructs the area where the trend is located.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信