Alya Al Farsi, F. Doctor, D. Petrovic, S. Chandran, Charalampos Karyotis
{"title":"区间值数据增强模糊认知图:幼儿自闭症演绎的一种方法","authors":"Alya Al Farsi, F. Doctor, D. Petrovic, S. Chandran, Charalampos Karyotis","doi":"10.1109/FUZZ-IEEE.2017.8015702","DOIUrl":null,"url":null,"abstract":"Fuzzy Cognitive Maps (FCMs) are a soft computing technique characterized by robust properties that make them an effective technique for medical decision support systems. Making decisions within a medical domain is difficult due to the existence of high levels of uncertainty. The sources of this uncertainty can be due to the variation of physicians' opinions and experiences. The structure of existing FCMs is based on type-1 fuzzy sets in order to represent the causal relations among concepts of the modeled system. Therefore, the ability of the FCM to handle high levels of uncertainties and deliver accurate results can be hindered. In this paper, we propose using the Interval Agreement Approach to model the weights of links in FCMs to capture high level uncertainties in the presence of imprecise data acquired from different medical experts to enhance its decision modelling and reasoning capability. The proposed model is used in identifying if a child is diagnosed with an Autism Spectrum Disorder (ASD) where the Modified Checklist for Autism in Toddlers is used as a standard tool to derive the inputs for the FCMs. Initial results demonstrate that the proposed method outperforms conventional FCMs in classifying ASD based on a dataset of diagnosed cases.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Interval valued data enhanced fuzzy cognitive maps: Torwards an appraoch for Autism deduction in Toddlers\",\"authors\":\"Alya Al Farsi, F. Doctor, D. Petrovic, S. Chandran, Charalampos Karyotis\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy Cognitive Maps (FCMs) are a soft computing technique characterized by robust properties that make them an effective technique for medical decision support systems. Making decisions within a medical domain is difficult due to the existence of high levels of uncertainty. The sources of this uncertainty can be due to the variation of physicians' opinions and experiences. The structure of existing FCMs is based on type-1 fuzzy sets in order to represent the causal relations among concepts of the modeled system. Therefore, the ability of the FCM to handle high levels of uncertainties and deliver accurate results can be hindered. In this paper, we propose using the Interval Agreement Approach to model the weights of links in FCMs to capture high level uncertainties in the presence of imprecise data acquired from different medical experts to enhance its decision modelling and reasoning capability. The proposed model is used in identifying if a child is diagnosed with an Autism Spectrum Disorder (ASD) where the Modified Checklist for Autism in Toddlers is used as a standard tool to derive the inputs for the FCMs. Initial results demonstrate that the proposed method outperforms conventional FCMs in classifying ASD based on a dataset of diagnosed cases.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Interval valued data enhanced fuzzy cognitive maps: Torwards an appraoch for Autism deduction in Toddlers
Fuzzy Cognitive Maps (FCMs) are a soft computing technique characterized by robust properties that make them an effective technique for medical decision support systems. Making decisions within a medical domain is difficult due to the existence of high levels of uncertainty. The sources of this uncertainty can be due to the variation of physicians' opinions and experiences. The structure of existing FCMs is based on type-1 fuzzy sets in order to represent the causal relations among concepts of the modeled system. Therefore, the ability of the FCM to handle high levels of uncertainties and deliver accurate results can be hindered. In this paper, we propose using the Interval Agreement Approach to model the weights of links in FCMs to capture high level uncertainties in the presence of imprecise data acquired from different medical experts to enhance its decision modelling and reasoning capability. The proposed model is used in identifying if a child is diagnosed with an Autism Spectrum Disorder (ASD) where the Modified Checklist for Autism in Toddlers is used as a standard tool to derive the inputs for the FCMs. Initial results demonstrate that the proposed method outperforms conventional FCMs in classifying ASD based on a dataset of diagnosed cases.