嵌入式智能的协方差矩阵紧凑差分进化

Y. Jewajinda
{"title":"嵌入式智能的协方差矩阵紧凑差分进化","authors":"Y. Jewajinda","doi":"10.1109/TENCONSPRING.2016.7519431","DOIUrl":null,"url":null,"abstract":"This paper presents a compact evolutionary algorithm called the covariance matrix compact differential evolution (CMcDE). CMcDE is a real-parameter optimization evolutionary algorithm that adopt crossover in eigenvector space and representing population of search solutions as Gaussian probability distribution. The proposed algorithm has been tested using a standard test set of numerical problems. The experimental results show that the proposed CMcDE algorithm outperforms other algorithms in the test sets.","PeriodicalId":166275,"journal":{"name":"2016 IEEE Region 10 Symposium (TENSYMP)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Covariance matrix compact differential evolution for embedded intelligence\",\"authors\":\"Y. Jewajinda\",\"doi\":\"10.1109/TENCONSPRING.2016.7519431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a compact evolutionary algorithm called the covariance matrix compact differential evolution (CMcDE). CMcDE is a real-parameter optimization evolutionary algorithm that adopt crossover in eigenvector space and representing population of search solutions as Gaussian probability distribution. The proposed algorithm has been tested using a standard test set of numerical problems. The experimental results show that the proposed CMcDE algorithm outperforms other algorithms in the test sets.\",\"PeriodicalId\":166275,\"journal\":{\"name\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCONSPRING.2016.7519431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCONSPRING.2016.7519431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种称为协方差矩阵紧凑差分进化(CMcDE)的紧凑进化算法。CMcDE是一种实参数优化进化算法,它采用特征向量空间交叉,将搜索解的总体表示为高斯概率分布。所提出的算法已经用一个标准的数值问题测试集进行了测试。实验结果表明,本文提出的CMcDE算法在测试集上优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariance matrix compact differential evolution for embedded intelligence
This paper presents a compact evolutionary algorithm called the covariance matrix compact differential evolution (CMcDE). CMcDE is a real-parameter optimization evolutionary algorithm that adopt crossover in eigenvector space and representing population of search solutions as Gaussian probability distribution. The proposed algorithm has been tested using a standard test set of numerical problems. The experimental results show that the proposed CMcDE algorithm outperforms other algorithms in the test sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信