{"title":"肺CT中肺结节分类的深度特征学习","authors":"Bum-Chae Kim, Y. Sung, Heung-Il Suk","doi":"10.1109/IWW-BCI.2016.7457462","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.","PeriodicalId":208670,"journal":{"name":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Deep feature learning for pulmonary nodule classification in a lung CT\",\"authors\":\"Bum-Chae Kim, Y. Sung, Heung-Il Suk\",\"doi\":\"10.1109/IWW-BCI.2016.7457462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.\",\"PeriodicalId\":208670,\"journal\":{\"name\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2016.7457462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2016.7457462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep feature learning for pulmonary nodule classification in a lung CT
In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.