肺CT中肺结节分类的深度特征学习

Bum-Chae Kim, Y. Sung, Heung-Il Suk
{"title":"肺CT中肺结节分类的深度特征学习","authors":"Bum-Chae Kim, Y. Sung, Heung-Il Suk","doi":"10.1109/IWW-BCI.2016.7457462","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.","PeriodicalId":208670,"journal":{"name":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Deep feature learning for pulmonary nodule classification in a lung CT\",\"authors\":\"Bum-Chae Kim, Y. Sung, Heung-Il Suk\",\"doi\":\"10.1109/IWW-BCI.2016.7457462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.\",\"PeriodicalId\":208670,\"journal\":{\"name\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 4th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2016.7457462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 4th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2016.7457462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

在本文中,我们提出了一种在肺部CT上识别肺结节的新方法。具体来说,我们设计了一个深度神经网络,通过它我们提取原始手工制作的图像特征中固有的抽象信息。然后,我们将深度学习表征与原始原始图像特征结合成一个长特征向量。通过组合特征向量,我们训练一个分类器,然后通过t检验进行特征选择。为了验证所提出方法的有效性,我们在20个受试者的内部数据集上进行了实验;3598例肺结节(恶性178例,良性3420例),由放射科医师手工分割。在我们的实验中,我们的最大准确度为95.5%,灵敏度为94.4%,AUC为0.987,优于竞争方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep feature learning for pulmonary nodule classification in a lung CT
In this paper, we propose a novel method of identifying pulmonary nodules in a lung CT. Specifically, we devise a deep neural network by which we extract abstract information inherent in raw hand-crafted imaging features. We then combine the deep learned representations with the original raw imaging features into a long feature vector. By taking the combined feature vectors, we train a classifier, preceded by a feature selection via t-test. To validate the effectiveness of the proposed method, we performed experiments on our in-house dataset of 20 subjects; 3,598 pulmonary nodules (malignant: 178, benign: 3,420), which were manually segmented by a radiologist. In our experiments, we achieved the maximal accuracy of 95.5%, sensitivity of 94.4%, and AUC of 0.987, outperforming the competing method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信