基于时空相关分析的无线传感器网络估计新模型

Xiaojun Ren, H. Sug, Hoonjae Lee
{"title":"基于时空相关分析的无线传感器网络估计新模型","authors":"Xiaojun Ren, H. Sug, Hoonjae Lee","doi":"10.6109/jicce.2015.13.2.105","DOIUrl":null,"url":null,"abstract":"The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.","PeriodicalId":272551,"journal":{"name":"J. Inform. and Commun. Convergence Engineering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis\",\"authors\":\"Xiaojun Ren, H. Sug, Hoonjae Lee\",\"doi\":\"10.6109/jicce.2015.13.2.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.\",\"PeriodicalId\":272551,\"journal\":{\"name\":\"J. Inform. and Commun. Convergence Engineering\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inform. and Commun. Convergence Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6109/jicce.2015.13.2.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inform. and Commun. Convergence Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6109/jicce.2015.13.2.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

缺失传感器值的估计是传感器网络应用中的一个重要问题,但现有的方法存在一些局限性,如应用范围和估计精度的限制。因此,本文提出了一种基于时空相关分析(STCAM)的估算模型。STCAM可以充分利用空间相关性和时间相关性,可以识别传感器参数是空间相关性还是时间相关性,缺失的传感器数据是否是连续的。根据识别结果,STCAM可以从时间相关分析的线性插值算法(TCA-LI)、时间相关分析的多元回归算法(TCA-MR)、空间相关分析(SCA)、时空相关分析(STCA)中选择一种最合适的算法来估计缺失的传感器数据。在英特尔实验室数据集和交通数据集上对STCAM进行了评估,仿真实验结果表明STCAM具有良好的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Estimation Model for Wireless Sensor Networks Based on the Spatial-Temporal Correlation Analysis
The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信