基于时空自编码器的监控视频异常事件检测

{"title":"基于时空自编码器的监控视频异常事件检测","authors":"","doi":"10.30534/ijatcse/2022/011132022","DOIUrl":null,"url":null,"abstract":"Surveillance cameras are proliferating, and millions of devices are being used to capture endless footage of surveillance videos. With the advancements in computer vision and deep learning, we can now contemplate these videos to detect anomalies. In this paper, we propose to identify anomalies by using Spatiotemporal autoencoders. The autoencoders based on 3-D convolutional networks will identify anomalies in surveillance footage based on spatiotemporal features. Our architecture consists of two components, an encoder for spatial feature extraction, and a decoder for the reconstruction of frames. Then, abnormal events are identified based on reconstruction loss. We used the Avenue dataset and UCSD dataset for training and evaluation.","PeriodicalId":129636,"journal":{"name":"International Journal of Advanced Trends in Computer Science and Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomalous Event Detection in Surveillance Videos using Spatio-temporal Autoencoders\",\"authors\":\"\",\"doi\":\"10.30534/ijatcse/2022/011132022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surveillance cameras are proliferating, and millions of devices are being used to capture endless footage of surveillance videos. With the advancements in computer vision and deep learning, we can now contemplate these videos to detect anomalies. In this paper, we propose to identify anomalies by using Spatiotemporal autoencoders. The autoencoders based on 3-D convolutional networks will identify anomalies in surveillance footage based on spatiotemporal features. Our architecture consists of two components, an encoder for spatial feature extraction, and a decoder for the reconstruction of frames. Then, abnormal events are identified based on reconstruction loss. We used the Avenue dataset and UCSD dataset for training and evaluation.\",\"PeriodicalId\":129636,\"journal\":{\"name\":\"International Journal of Advanced Trends in Computer Science and Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Trends in Computer Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30534/ijatcse/2022/011132022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Trends in Computer Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30534/ijatcse/2022/011132022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

监控摄像头正在激增,数以百万计的设备被用来捕捉没完没了的监控视频。随着计算机视觉和深度学习的进步,我们现在可以通过观察这些视频来检测异常。在本文中,我们提出使用时空自编码器来识别异常。基于三维卷积网络的自编码器将基于时空特征识别监控录像中的异常。我们的架构由两个组件组成,一个用于空间特征提取的编码器和一个用于帧重建的解码器。然后,基于重构损失识别异常事件。我们使用Avenue数据集和UCSD数据集进行训练和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anomalous Event Detection in Surveillance Videos using Spatio-temporal Autoencoders
Surveillance cameras are proliferating, and millions of devices are being used to capture endless footage of surveillance videos. With the advancements in computer vision and deep learning, we can now contemplate these videos to detect anomalies. In this paper, we propose to identify anomalies by using Spatiotemporal autoencoders. The autoencoders based on 3-D convolutional networks will identify anomalies in surveillance footage based on spatiotemporal features. Our architecture consists of two components, an encoder for spatial feature extraction, and a decoder for the reconstruction of frames. Then, abnormal events are identified based on reconstruction loss. We used the Avenue dataset and UCSD dataset for training and evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信