M. Al-Shatari, F. Hussin, A. A. Aziz, M. S. Rohmad, Xuan-Tu Tran
{"title":"基于LED分组密码和光子哈希函数的物联网设备复合轻量级认证加密","authors":"M. Al-Shatari, F. Hussin, A. A. Aziz, M. S. Rohmad, Xuan-Tu Tran","doi":"10.1109/MCSoC57363.2022.00030","DOIUrl":null,"url":null,"abstract":"IoT devices are being used in different environments recently. They are mostly resource-constrained, and therefore, their data security is crucial. Several lightweight cryptographic primitives were proposed to overcome the limitations of the devices while maintaining moderate security levels. Such primitives provide either encryption or authentication. The encryption must be authenticated by a Message Authentication Code (MA C) or hash function for better overall security. Therefore, an architecture of integrated lightweight authenticated encryption (AE) based on LED block cipher and PHOTON hash function is presented. LED and PHOTON architectures were combined while exploiting area-performance trade-offs and utilizing the shared internal functions. The architecture is designed in Verilog HDL, synthesized in Altera Quartus II and simulated on Field Programmable Gate Array (FPGA) devices. The individual design of LED utilizes 357 logic elements (LE) and PHOTON utilizes 852 LE resulting in a total of 1209 LE. The logic utilization of the proposed shared architecture is 1046 LE. The results reveal that 13.5 % reduction in logic area is achieved compared to the independent implementations of LED and PHOTON.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Composite Lightweight Authenticated Encryption Based on LED Block Cipher and PHOTON Hash Function for IoT Devices\",\"authors\":\"M. Al-Shatari, F. Hussin, A. A. Aziz, M. S. Rohmad, Xuan-Tu Tran\",\"doi\":\"10.1109/MCSoC57363.2022.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IoT devices are being used in different environments recently. They are mostly resource-constrained, and therefore, their data security is crucial. Several lightweight cryptographic primitives were proposed to overcome the limitations of the devices while maintaining moderate security levels. Such primitives provide either encryption or authentication. The encryption must be authenticated by a Message Authentication Code (MA C) or hash function for better overall security. Therefore, an architecture of integrated lightweight authenticated encryption (AE) based on LED block cipher and PHOTON hash function is presented. LED and PHOTON architectures were combined while exploiting area-performance trade-offs and utilizing the shared internal functions. The architecture is designed in Verilog HDL, synthesized in Altera Quartus II and simulated on Field Programmable Gate Array (FPGA) devices. The individual design of LED utilizes 357 logic elements (LE) and PHOTON utilizes 852 LE resulting in a total of 1209 LE. The logic utilization of the proposed shared architecture is 1046 LE. The results reveal that 13.5 % reduction in logic area is achieved compared to the independent implementations of LED and PHOTON.\",\"PeriodicalId\":150801,\"journal\":{\"name\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"162 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC57363.2022.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
最近,物联网设备正在不同的环境中使用。他们大多资源有限,因此,他们的数据安全至关重要。提出了几个轻量级的加密原语,以克服设备的限制,同时保持适度的安全级别。这些原语提供加密或身份验证。加密必须通过消息验证码(Message Authentication Code, MA C)或散列函数进行身份验证,以获得更好的整体安全性。为此,提出了一种基于LED分组密码和光子哈希函数的集成轻量级认证加密(AE)体系结构。LED和光子架构结合在一起,同时利用面积性能权衡和共享的内部功能。该体系结构采用Verilog HDL进行设计,在Altera Quartus II中进行合成,并在现场可编程门阵列(FPGA)器件上进行仿真。LED的单独设计使用357个逻辑元件(LE),而PHOTON使用852个逻辑元件,总共使用1209个逻辑元件。所提出的共享体系结构的逻辑利用率为1046le。结果表明,与独立实现LED和光子相比,该电路的逻辑面积减少了13.5%。
Composite Lightweight Authenticated Encryption Based on LED Block Cipher and PHOTON Hash Function for IoT Devices
IoT devices are being used in different environments recently. They are mostly resource-constrained, and therefore, their data security is crucial. Several lightweight cryptographic primitives were proposed to overcome the limitations of the devices while maintaining moderate security levels. Such primitives provide either encryption or authentication. The encryption must be authenticated by a Message Authentication Code (MA C) or hash function for better overall security. Therefore, an architecture of integrated lightweight authenticated encryption (AE) based on LED block cipher and PHOTON hash function is presented. LED and PHOTON architectures were combined while exploiting area-performance trade-offs and utilizing the shared internal functions. The architecture is designed in Verilog HDL, synthesized in Altera Quartus II and simulated on Field Programmable Gate Array (FPGA) devices. The individual design of LED utilizes 357 logic elements (LE) and PHOTON utilizes 852 LE resulting in a total of 1209 LE. The logic utilization of the proposed shared architecture is 1046 LE. The results reveal that 13.5 % reduction in logic area is achieved compared to the independent implementations of LED and PHOTON.