快速候选生成两阶段文档排名:帖子列表交集与布隆过滤器

N. Asadi, Jimmy J. Lin
{"title":"快速候选生成两阶段文档排名:帖子列表交集与布隆过滤器","authors":"N. Asadi, Jimmy J. Lin","doi":"10.1145/2396761.2398656","DOIUrl":null,"url":null,"abstract":"Most modern web search engines employ a two-phase ranking strategy: a candidate list of documents is generated using a \"cheap\" but low-quality scoring function, which is then reranked by an \"expensive\" but high-quality method (usually machine-learned). This paper focuses on the problem of candidate generation for conjunctive query processing in this context. We describe and evaluate a fast, approximate postings list intersection algorithms based on Bloom filters. Due to the power of modern learning-to-rank techniques and emphasis on early precision, significant speedups can be achieved without loss of end-to-end retrieval effectiveness. Explorations reveal a rich design space where effectiveness and efficiency can be balanced in response to specific hardware configurations and application scenarios.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Fast candidate generation for two-phase document ranking: postings list intersection with bloom filters\",\"authors\":\"N. Asadi, Jimmy J. Lin\",\"doi\":\"10.1145/2396761.2398656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most modern web search engines employ a two-phase ranking strategy: a candidate list of documents is generated using a \\\"cheap\\\" but low-quality scoring function, which is then reranked by an \\\"expensive\\\" but high-quality method (usually machine-learned). This paper focuses on the problem of candidate generation for conjunctive query processing in this context. We describe and evaluate a fast, approximate postings list intersection algorithms based on Bloom filters. Due to the power of modern learning-to-rank techniques and emphasis on early precision, significant speedups can be achieved without loss of end-to-end retrieval effectiveness. Explorations reveal a rich design space where effectiveness and efficiency can be balanced in response to specific hardware configurations and application scenarios.\",\"PeriodicalId\":313414,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Information and knowledge management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2396761.2398656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

大多数现代网络搜索引擎采用两阶段排序策略:使用“廉价”但低质量的评分函数生成候选文档列表,然后使用“昂贵”但高质量的方法(通常是机器学习)重新排序。本文重点研究了在此背景下联合查询处理的候选对象生成问题。我们描述并评估了一种快速、近似的基于Bloom过滤器的帖子列表交叉算法。由于现代学习排序技术的力量和对早期精度的强调,可以在不损失端到端检索效率的情况下实现显着的加速。探索揭示了丰富的设计空间,其中可以根据特定的硬件配置和应用场景平衡有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast candidate generation for two-phase document ranking: postings list intersection with bloom filters
Most modern web search engines employ a two-phase ranking strategy: a candidate list of documents is generated using a "cheap" but low-quality scoring function, which is then reranked by an "expensive" but high-quality method (usually machine-learned). This paper focuses on the problem of candidate generation for conjunctive query processing in this context. We describe and evaluate a fast, approximate postings list intersection algorithms based on Bloom filters. Due to the power of modern learning-to-rank techniques and emphasis on early precision, significant speedups can be achieved without loss of end-to-end retrieval effectiveness. Explorations reveal a rich design space where effectiveness and efficiency can be balanced in response to specific hardware configurations and application scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信