模式识别技术应用于电力系统暂态稳定研究中产生的摆动曲线分类

P. Yan, A. Sekar, P. Rajan
{"title":"模式识别技术应用于电力系统暂态稳定研究中产生的摆动曲线分类","authors":"P. Yan, A. Sekar, P. Rajan","doi":"10.1109/SECON.2000.845619","DOIUrl":null,"url":null,"abstract":"This paper presents two approaches to determine the stability of power system based on pattern recognition techniques using artificial neural network (ANN) and linear classification. The two major states of power system operations are termed stable and unstable. The performance index can be expressed by the patterns and then be recognized by a properly trained neural network or a linear discriminant function. A feature vector selected by fast Fourier transformation is employed for reducing input pattern dimension. ANN is found to be an efficient tool for identifying stable states. System stability or instability indices can be predicted quickly and accurately.","PeriodicalId":206022,"journal":{"name":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Pattern recognition techniques applied to the classification of swing curves generated in a power system transient stability study\",\"authors\":\"P. Yan, A. Sekar, P. Rajan\",\"doi\":\"10.1109/SECON.2000.845619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two approaches to determine the stability of power system based on pattern recognition techniques using artificial neural network (ANN) and linear classification. The two major states of power system operations are termed stable and unstable. The performance index can be expressed by the patterns and then be recognized by a properly trained neural network or a linear discriminant function. A feature vector selected by fast Fourier transformation is employed for reducing input pattern dimension. ANN is found to be an efficient tool for identifying stable states. System stability or instability indices can be predicted quickly and accurately.\",\"PeriodicalId\":206022,\"journal\":{\"name\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.2000.845619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE SoutheastCon 2000. 'Preparing for The New Millennium' (Cat. No.00CH37105)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2000.845619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了基于人工神经网络和线性分类的模式识别技术确定电力系统稳定性的两种方法。电力系统运行的两种主要状态称为稳定状态和不稳定状态。性能指标可以用模式来表示,然后由经过适当训练的神经网络或线性判别函数来识别。采用快速傅里叶变换选择特征向量来降低输入模式维数。人工神经网络是一种识别稳定状态的有效工具。可以快速准确地预测系统的稳定或不稳定指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern recognition techniques applied to the classification of swing curves generated in a power system transient stability study
This paper presents two approaches to determine the stability of power system based on pattern recognition techniques using artificial neural network (ANN) and linear classification. The two major states of power system operations are termed stable and unstable. The performance index can be expressed by the patterns and then be recognized by a properly trained neural network or a linear discriminant function. A feature vector selected by fast Fourier transformation is employed for reducing input pattern dimension. ANN is found to be an efficient tool for identifying stable states. System stability or instability indices can be predicted quickly and accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信