基于卷积神经网络的Jaya算法的深度假视频精确检测

Z. F. Hussain, Hind Ra'ad Ibraheem
{"title":"基于卷积神经网络的Jaya算法的深度假视频精确检测","authors":"Z. F. Hussain, Hind Ra'ad Ibraheem","doi":"10.58496/mjcs/2023/007","DOIUrl":null,"url":null,"abstract":"Deepfake videos are becoming an increasing concern due to their potential to spread misinformation and cause harm. In this paper, we propose a novel approach for accurately detecting deepfake videos using the combination of Convolutional Neural Networks (CNNs) with the Jaya algorithm optimization. The approach is evaluated on two publicly available datasets, the DeepFake Detection Challenge (DFDC) dataset and the Celeb-DF dataset, and achieves state-of-the-art performance on both datasets. Our approach achieves an accuracy of 99.3% on the DFDC dataset and 97.6% on the Celeb-DF dataset, with high F1 scores indicating a high precision and recall for detecting deepfake videos. Furthermore, our approach is more robust against adversarial attacks than existing state-of-the-art methods. The combination of CNNs with the Jaya algorithm optimization enables effective capture of the temporal information in the video sequence, while the use of robust evaluation metrics ensures objective measurement and comparison with existing methods. Our proposed approach offers a highly effective solution for detecting deepfake videos, which has the potential to be a valuable tool for media forensics, content moderation, and cyber security.","PeriodicalId":369414,"journal":{"name":"Mesopotamian Journal of Cyber Security","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Convolutional Neural Networks based Jaya algorithm Approach for Accurate Deepfake Video Detection\",\"authors\":\"Z. F. Hussain, Hind Ra'ad Ibraheem\",\"doi\":\"10.58496/mjcs/2023/007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deepfake videos are becoming an increasing concern due to their potential to spread misinformation and cause harm. In this paper, we propose a novel approach for accurately detecting deepfake videos using the combination of Convolutional Neural Networks (CNNs) with the Jaya algorithm optimization. The approach is evaluated on two publicly available datasets, the DeepFake Detection Challenge (DFDC) dataset and the Celeb-DF dataset, and achieves state-of-the-art performance on both datasets. Our approach achieves an accuracy of 99.3% on the DFDC dataset and 97.6% on the Celeb-DF dataset, with high F1 scores indicating a high precision and recall for detecting deepfake videos. Furthermore, our approach is more robust against adversarial attacks than existing state-of-the-art methods. The combination of CNNs with the Jaya algorithm optimization enables effective capture of the temporal information in the video sequence, while the use of robust evaluation metrics ensures objective measurement and comparison with existing methods. Our proposed approach offers a highly effective solution for detecting deepfake videos, which has the potential to be a valuable tool for media forensics, content moderation, and cyber security.\",\"PeriodicalId\":369414,\"journal\":{\"name\":\"Mesopotamian Journal of Cyber Security\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mesopotamian Journal of Cyber Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58496/mjcs/2023/007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mesopotamian Journal of Cyber Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58496/mjcs/2023/007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度造假视频因其传播错误信息和造成伤害的潜力而日益受到关注。在本文中,我们提出了一种使用卷积神经网络(cnn)和Jaya算法优化相结合来准确检测深度假视频的新方法。该方法在两个公开可用的数据集上进行了评估,即DeepFake Detection Challenge (DFDC)数据集和Celeb-DF数据集,并在这两个数据集上实现了最先进的性能。我们的方法在DFDC数据集上实现了99.3%的准确率,在Celeb-DF数据集上实现了97.6%的准确率,高F1分数表明检测深度假视频的精度和召回率都很高。此外,我们的方法比现有的最先进的方法更能抵御对抗性攻击。cnn与Jaya算法优化相结合,能够有效捕获视频序列中的时间信息,同时使用鲁棒性评价指标,保证了与现有方法的客观测量和比较。我们提出的方法为检测深度假视频提供了一种非常有效的解决方案,它有可能成为媒体取证、内容审核和网络安全的宝贵工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Convolutional Neural Networks based Jaya algorithm Approach for Accurate Deepfake Video Detection
Deepfake videos are becoming an increasing concern due to their potential to spread misinformation and cause harm. In this paper, we propose a novel approach for accurately detecting deepfake videos using the combination of Convolutional Neural Networks (CNNs) with the Jaya algorithm optimization. The approach is evaluated on two publicly available datasets, the DeepFake Detection Challenge (DFDC) dataset and the Celeb-DF dataset, and achieves state-of-the-art performance on both datasets. Our approach achieves an accuracy of 99.3% on the DFDC dataset and 97.6% on the Celeb-DF dataset, with high F1 scores indicating a high precision and recall for detecting deepfake videos. Furthermore, our approach is more robust against adversarial attacks than existing state-of-the-art methods. The combination of CNNs with the Jaya algorithm optimization enables effective capture of the temporal information in the video sequence, while the use of robust evaluation metrics ensures objective measurement and comparison with existing methods. Our proposed approach offers a highly effective solution for detecting deepfake videos, which has the potential to be a valuable tool for media forensics, content moderation, and cyber security.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信