概率系统的定性逻辑和等价

L. D. Alfaro, K. Chatterjee, M. Faella, Axel Legay
{"title":"概率系统的定性逻辑和等价","authors":"L. D. Alfaro, K. Chatterjee, M. Faella, Axel Legay","doi":"10.2168/LMCS-5(2:7)2009","DOIUrl":null,"url":null,"abstract":"We present qualitative randomized CTL (QRCTL), a qualitative version of pCTL, for specifying properties of Markov decision processes (MDPs). QRCTL formulas can express the fact that certain temporal properties hold with probability 0 or 1, but they do not distinguish other probabilities values. We present a symbolic, polynomial time model-checking algorithm for QRCTL on MDPs. Then, we study the equivalence relation induced by QRCTL, called qualitative equivalence. We show that for finite alternating MDPs, where nondeterministic and probabilistic choice occur in different states, qualitative equivalence coincides with alternating bisimulation, and can thus be computed via efficient partition-refinement algorithms. Surprisingly, the result does not hold for non-alternating MDPs. Indeed, we show that no local partition refinement algorithm can compute qualitative equivalence on non-alternating MDPs. Finally, we consider QRCTL*, that is the \"star extension\" of QRCTL. We show that QRCTL and QRCTL* induce the same qualitative equivalence on alternating MDPs, while on non-alternating MDPs, the equivalence arising from QRCTL* can be strictly finer. We also provide a full characterization of the relation between qualitative equivalence, bisimulation, and alternating bisimulation, according to whether the MDPs are finite, and to whether their transition relations are finite-branching.","PeriodicalId":249627,"journal":{"name":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Qualitative Logics and Equivalences for Probabilistic Systems\",\"authors\":\"L. D. Alfaro, K. Chatterjee, M. Faella, Axel Legay\",\"doi\":\"10.2168/LMCS-5(2:7)2009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present qualitative randomized CTL (QRCTL), a qualitative version of pCTL, for specifying properties of Markov decision processes (MDPs). QRCTL formulas can express the fact that certain temporal properties hold with probability 0 or 1, but they do not distinguish other probabilities values. We present a symbolic, polynomial time model-checking algorithm for QRCTL on MDPs. Then, we study the equivalence relation induced by QRCTL, called qualitative equivalence. We show that for finite alternating MDPs, where nondeterministic and probabilistic choice occur in different states, qualitative equivalence coincides with alternating bisimulation, and can thus be computed via efficient partition-refinement algorithms. Surprisingly, the result does not hold for non-alternating MDPs. Indeed, we show that no local partition refinement algorithm can compute qualitative equivalence on non-alternating MDPs. Finally, we consider QRCTL*, that is the \\\"star extension\\\" of QRCTL. We show that QRCTL and QRCTL* induce the same qualitative equivalence on alternating MDPs, while on non-alternating MDPs, the equivalence arising from QRCTL* can be strictly finer. We also provide a full characterization of the relation between qualitative equivalence, bisimulation, and alternating bisimulation, according to whether the MDPs are finite, and to whether their transition relations are finite-branching.\",\"PeriodicalId\":249627,\"journal\":{\"name\":\"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2168/LMCS-5(2:7)2009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2168/LMCS-5(2:7)2009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了定性随机CTL (QRCTL),这是pCTL的定性版本,用于指定马尔可夫决策过程(mdp)的性质。QRCTL公式可以表示某些时间属性以概率0或1存在的事实,但它们不能区分其他概率值。我们提出了一种符号的、多项式时间的MDPs上QRCTL模型检查算法。然后,我们研究了QRCTL诱导的等价关系,称为定性等价。我们表明,对于有限交替mdp,其中不确定性和概率选择发生在不同的状态,定性等效与交替双模拟一致,因此可以通过有效的分割-细化算法计算。令人惊讶的是,这个结果并不适用于非交替的mdp。事实上,我们证明了没有局部分区细化算法可以在非交替的mdp上计算定性等价。最后,我们考虑QRCTL*,即QRCTL的“星形扩展”。我们发现,QRCTL和QRCTL*在交替MDPs上诱导相同的定性等效,而在非交替MDPs上,QRCTL*产生的等效可以严格细化。根据mdp是否有限,以及它们的过渡关系是否有限分支,我们还提供了定性等价,双模拟和交替双模拟之间关系的完整表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Qualitative Logics and Equivalences for Probabilistic Systems
We present qualitative randomized CTL (QRCTL), a qualitative version of pCTL, for specifying properties of Markov decision processes (MDPs). QRCTL formulas can express the fact that certain temporal properties hold with probability 0 or 1, but they do not distinguish other probabilities values. We present a symbolic, polynomial time model-checking algorithm for QRCTL on MDPs. Then, we study the equivalence relation induced by QRCTL, called qualitative equivalence. We show that for finite alternating MDPs, where nondeterministic and probabilistic choice occur in different states, qualitative equivalence coincides with alternating bisimulation, and can thus be computed via efficient partition-refinement algorithms. Surprisingly, the result does not hold for non-alternating MDPs. Indeed, we show that no local partition refinement algorithm can compute qualitative equivalence on non-alternating MDPs. Finally, we consider QRCTL*, that is the "star extension" of QRCTL. We show that QRCTL and QRCTL* induce the same qualitative equivalence on alternating MDPs, while on non-alternating MDPs, the equivalence arising from QRCTL* can be strictly finer. We also provide a full characterization of the relation between qualitative equivalence, bisimulation, and alternating bisimulation, according to whether the MDPs are finite, and to whether their transition relations are finite-branching.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信