认知自己:通过核心图形认知和区分进行图形预训练

Tao Yu, Yao Fu, Linghui Hu, Huizhao Wang, Weihao Jiang, Shi Pu
{"title":"认知自己:通过核心图形认知和区分进行图形预训练","authors":"Tao Yu, Yao Fu, Linghui Hu, Huizhao Wang, Weihao Jiang, Shi Pu","doi":"10.1145/3511808.3557259","DOIUrl":null,"url":null,"abstract":"While Graph Neural Networks (GNNs) have become de facto criterion in graph representation learning, they still suffer from label scarcity and poor generalization. To alleviate these issues, graph pre-training has been proposed to learn universal patterns from unlabeled data via applying self-supervised tasks. Most existing graph pre-training methods only use a single self-supervised task, which will lead to insufficient knowledge mining. Recently, there are also some works that try to use multiple self-supervised tasks, however, we argue that these methods still suffer from a serious problem, which we call it graph structure impairment. That is, there actually exists structural gaps among several tasks due to the divergence of optimization objectives, which means customized graph structures should be provided for different self-supervised tasks. Graph structure impairment not only significantly hurts the generalizability of pre-trained GNNs, but also leads to suboptimal solution, and there is no study so far to address it well. Motivated by Meta-Cognitive theory, we propose a novel model named Core Graph Cognizing and Differentiating (CORE) to deal with the problem in an effective approach. Specifically, CORE consists of cognizing network and differentiating process, the former cognizes a core graph which stands for the essential structure of the graph, and the latter allows it to differentiate into several task-specific graphs for different tasks. Besides, this is also the first study to combine graph pre-training with cognitive theory to build a cognition-aware model. Several experiments have been conducted to demonstrate the effectiveness of CORE.","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cognize Yourself: Graph Pre-Training via Core Graph Cognizing and Differentiating\",\"authors\":\"Tao Yu, Yao Fu, Linghui Hu, Huizhao Wang, Weihao Jiang, Shi Pu\",\"doi\":\"10.1145/3511808.3557259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While Graph Neural Networks (GNNs) have become de facto criterion in graph representation learning, they still suffer from label scarcity and poor generalization. To alleviate these issues, graph pre-training has been proposed to learn universal patterns from unlabeled data via applying self-supervised tasks. Most existing graph pre-training methods only use a single self-supervised task, which will lead to insufficient knowledge mining. Recently, there are also some works that try to use multiple self-supervised tasks, however, we argue that these methods still suffer from a serious problem, which we call it graph structure impairment. That is, there actually exists structural gaps among several tasks due to the divergence of optimization objectives, which means customized graph structures should be provided for different self-supervised tasks. Graph structure impairment not only significantly hurts the generalizability of pre-trained GNNs, but also leads to suboptimal solution, and there is no study so far to address it well. Motivated by Meta-Cognitive theory, we propose a novel model named Core Graph Cognizing and Differentiating (CORE) to deal with the problem in an effective approach. Specifically, CORE consists of cognizing network and differentiating process, the former cognizes a core graph which stands for the essential structure of the graph, and the latter allows it to differentiate into several task-specific graphs for different tasks. Besides, this is also the first study to combine graph pre-training with cognitive theory to build a cognition-aware model. Several experiments have been conducted to demonstrate the effectiveness of CORE.\",\"PeriodicalId\":389624,\"journal\":{\"name\":\"Proceedings of the 31st ACM International Conference on Information & Knowledge Management\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511808.3557259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然图神经网络(gnn)已经成为图表示学习的事实上的标准,但它们仍然存在标签稀缺性和泛化性差的问题。为了缓解这些问题,图预训练被提出通过应用自监督任务从未标记数据中学习通用模式。现有的大多数图预训练方法仅使用单个自监督任务,这将导致知识挖掘不足。最近,也有一些作品尝试使用多个自监督任务,但是我们认为这些方法仍然存在一个严重的问题,我们称之为图结构损伤。即由于优化目标的分歧,多个任务之间实际上存在结构性差距,这就需要为不同的自监督任务提供定制化的图结构。图结构损伤不仅严重影响预训练gnn的泛化性,而且会导致次优解,目前尚无研究很好地解决这一问题。在元认知理论的激励下,我们提出了一种新的核心图认知和区分模型(Core)来有效地解决这一问题。具体来说,CORE由认知网络和区分过程组成,前者识别一个代表图的本质结构的核心图,后者允许它区分为几个特定任务的图,用于不同的任务。此外,这也是首次将图预训练与认知理论相结合,构建认知感知模型的研究。已经进行了几个实验来证明CORE的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cognize Yourself: Graph Pre-Training via Core Graph Cognizing and Differentiating
While Graph Neural Networks (GNNs) have become de facto criterion in graph representation learning, they still suffer from label scarcity and poor generalization. To alleviate these issues, graph pre-training has been proposed to learn universal patterns from unlabeled data via applying self-supervised tasks. Most existing graph pre-training methods only use a single self-supervised task, which will lead to insufficient knowledge mining. Recently, there are also some works that try to use multiple self-supervised tasks, however, we argue that these methods still suffer from a serious problem, which we call it graph structure impairment. That is, there actually exists structural gaps among several tasks due to the divergence of optimization objectives, which means customized graph structures should be provided for different self-supervised tasks. Graph structure impairment not only significantly hurts the generalizability of pre-trained GNNs, but also leads to suboptimal solution, and there is no study so far to address it well. Motivated by Meta-Cognitive theory, we propose a novel model named Core Graph Cognizing and Differentiating (CORE) to deal with the problem in an effective approach. Specifically, CORE consists of cognizing network and differentiating process, the former cognizes a core graph which stands for the essential structure of the graph, and the latter allows it to differentiate into several task-specific graphs for different tasks. Besides, this is also the first study to combine graph pre-training with cognitive theory to build a cognition-aware model. Several experiments have been conducted to demonstrate the effectiveness of CORE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信