{"title":"用于高级显示的纳米功能化荧光粉颗粒","authors":"M. Ollinger, V. Craciun, R. Singh","doi":"10.1115/imece2001/md-24808","DOIUrl":null,"url":null,"abstract":"\n Cathodoluminescence (CL) degradation measurements showed that by applying a nano meter scale indium tin oxide (ITO) coating on micron sized ZnS:Ag particulates the degradation lifetime was dramatically improved. X-ray photoelectron spectroscopy (XPS) analysis showed that the Zn 2p3/2 and S 2p3/2 peaks of the degraded ZnS:Ag were shifted to higher binding energies, which correspond to oxidized elements, with respect to those found for as-received ZnS:Ag. The XPS analysis for the ITO coated ZnS:Ag showed a broadening of the Zn 2p3/2 and S 2p3/2 peaks, which were a convolution of two peaks. In this case, the Zn 2p3/2 and S 2p3/2 peaks corresponding to ZnS were still present together with a small shoulder corresponding to the oxidized elements. This difference in the XPS shows that the ITO coating reduced the degradation rate by slowing the surface chemical changes on the ZnS:Ag.","PeriodicalId":141352,"journal":{"name":"Effects of Processing on Properties of Advanced Ceramics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanofunctionalized Phosphor Particles for Advanced Display Applications\",\"authors\":\"M. Ollinger, V. Craciun, R. Singh\",\"doi\":\"10.1115/imece2001/md-24808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cathodoluminescence (CL) degradation measurements showed that by applying a nano meter scale indium tin oxide (ITO) coating on micron sized ZnS:Ag particulates the degradation lifetime was dramatically improved. X-ray photoelectron spectroscopy (XPS) analysis showed that the Zn 2p3/2 and S 2p3/2 peaks of the degraded ZnS:Ag were shifted to higher binding energies, which correspond to oxidized elements, with respect to those found for as-received ZnS:Ag. The XPS analysis for the ITO coated ZnS:Ag showed a broadening of the Zn 2p3/2 and S 2p3/2 peaks, which were a convolution of two peaks. In this case, the Zn 2p3/2 and S 2p3/2 peaks corresponding to ZnS were still present together with a small shoulder corresponding to the oxidized elements. This difference in the XPS shows that the ITO coating reduced the degradation rate by slowing the surface chemical changes on the ZnS:Ag.\",\"PeriodicalId\":141352,\"journal\":{\"name\":\"Effects of Processing on Properties of Advanced Ceramics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Effects of Processing on Properties of Advanced Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/md-24808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Effects of Processing on Properties of Advanced Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/md-24808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanofunctionalized Phosphor Particles for Advanced Display Applications
Cathodoluminescence (CL) degradation measurements showed that by applying a nano meter scale indium tin oxide (ITO) coating on micron sized ZnS:Ag particulates the degradation lifetime was dramatically improved. X-ray photoelectron spectroscopy (XPS) analysis showed that the Zn 2p3/2 and S 2p3/2 peaks of the degraded ZnS:Ag were shifted to higher binding energies, which correspond to oxidized elements, with respect to those found for as-received ZnS:Ag. The XPS analysis for the ITO coated ZnS:Ag showed a broadening of the Zn 2p3/2 and S 2p3/2 peaks, which were a convolution of two peaks. In this case, the Zn 2p3/2 and S 2p3/2 peaks corresponding to ZnS were still present together with a small shoulder corresponding to the oxidized elements. This difference in the XPS shows that the ITO coating reduced the degradation rate by slowing the surface chemical changes on the ZnS:Ag.